Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving BERTScore for Machine Translation Evaluation Through Contrastive Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYD2WDDLX" target="_blank" >RIV/00216208:11320/25:YD2WDDLX - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194853736&doi=10.1109%2fACCESS.2024.3406993&partnerID=40&md5=57480f39e9117d46d4e0094cf242b313" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194853736&doi=10.1109%2fACCESS.2024.3406993&partnerID=40&md5=57480f39e9117d46d4e0094cf242b313</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3406993" target="_blank" >10.1109/ACCESS.2024.3406993</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving BERTScore for Machine Translation Evaluation Through Contrastive Learning

  • Popis výsledku v původním jazyce

    BERTScore is an automatic evaluation metric for machine translation. It calculates similarity scores between candidate and reference tokens through embeddings. The quality of embeddings is crucial, but embeddings of low-resource languages tend to be poor. Multilingual pre-trained models can transfer knowledge from rich-resource languages to low-resource languages, but embeddings from these models are not always well aligned. To improve BERTScore for low-resource languages, we attempt to align embeddings by fine-tuning pre-trained models via contrastive learning which shortens the distance between semantically similar sentences and increases the distance between dissimilar sentences. We experiment on Hausa, a low-resource language, in the WMT21 English-Hausa translation task. We conduct fine-tuning on three different pre-trained models (XLM-R, mBERT, LaBSE). Our experimental results show that our proposed method not only achieves higher correlation with human judgments than original BERTScore, but also surpass surface-based metrics such as BLEU, chrF, and the state-of-the-art metric COMET, when fine-tuning mBERT. Moreover, our proposed method generates better embeddings than pre-trained embedding models (E5, BGE, M3E) which are fine-tuned on different NLP tasks. We also extend our experiments to Chinese, a rich-resource language, in an English-Chinese translation task, and further confirms the effectiveness of our method. © 2013 IEEE.

  • Název v anglickém jazyce

    Improving BERTScore for Machine Translation Evaluation Through Contrastive Learning

  • Popis výsledku anglicky

    BERTScore is an automatic evaluation metric for machine translation. It calculates similarity scores between candidate and reference tokens through embeddings. The quality of embeddings is crucial, but embeddings of low-resource languages tend to be poor. Multilingual pre-trained models can transfer knowledge from rich-resource languages to low-resource languages, but embeddings from these models are not always well aligned. To improve BERTScore for low-resource languages, we attempt to align embeddings by fine-tuning pre-trained models via contrastive learning which shortens the distance between semantically similar sentences and increases the distance between dissimilar sentences. We experiment on Hausa, a low-resource language, in the WMT21 English-Hausa translation task. We conduct fine-tuning on three different pre-trained models (XLM-R, mBERT, LaBSE). Our experimental results show that our proposed method not only achieves higher correlation with human judgments than original BERTScore, but also surpass surface-based metrics such as BLEU, chrF, and the state-of-the-art metric COMET, when fine-tuning mBERT. Moreover, our proposed method generates better embeddings than pre-trained embedding models (E5, BGE, M3E) which are fine-tuned on different NLP tasks. We also extend our experiments to Chinese, a rich-resource language, in an English-Chinese translation task, and further confirms the effectiveness of our method. © 2013 IEEE.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    77739-77749

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85194853736