Improving BERTScore for Machine Translation Evaluation Through Contrastive Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYD2WDDLX" target="_blank" >RIV/00216208:11320/25:YD2WDDLX - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194853736&doi=10.1109%2fACCESS.2024.3406993&partnerID=40&md5=57480f39e9117d46d4e0094cf242b313" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194853736&doi=10.1109%2fACCESS.2024.3406993&partnerID=40&md5=57480f39e9117d46d4e0094cf242b313</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3406993" target="_blank" >10.1109/ACCESS.2024.3406993</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving BERTScore for Machine Translation Evaluation Through Contrastive Learning
Popis výsledku v původním jazyce
BERTScore is an automatic evaluation metric for machine translation. It calculates similarity scores between candidate and reference tokens through embeddings. The quality of embeddings is crucial, but embeddings of low-resource languages tend to be poor. Multilingual pre-trained models can transfer knowledge from rich-resource languages to low-resource languages, but embeddings from these models are not always well aligned. To improve BERTScore for low-resource languages, we attempt to align embeddings by fine-tuning pre-trained models via contrastive learning which shortens the distance between semantically similar sentences and increases the distance between dissimilar sentences. We experiment on Hausa, a low-resource language, in the WMT21 English-Hausa translation task. We conduct fine-tuning on three different pre-trained models (XLM-R, mBERT, LaBSE). Our experimental results show that our proposed method not only achieves higher correlation with human judgments than original BERTScore, but also surpass surface-based metrics such as BLEU, chrF, and the state-of-the-art metric COMET, when fine-tuning mBERT. Moreover, our proposed method generates better embeddings than pre-trained embedding models (E5, BGE, M3E) which are fine-tuned on different NLP tasks. We also extend our experiments to Chinese, a rich-resource language, in an English-Chinese translation task, and further confirms the effectiveness of our method. © 2013 IEEE.
Název v anglickém jazyce
Improving BERTScore for Machine Translation Evaluation Through Contrastive Learning
Popis výsledku anglicky
BERTScore is an automatic evaluation metric for machine translation. It calculates similarity scores between candidate and reference tokens through embeddings. The quality of embeddings is crucial, but embeddings of low-resource languages tend to be poor. Multilingual pre-trained models can transfer knowledge from rich-resource languages to low-resource languages, but embeddings from these models are not always well aligned. To improve BERTScore for low-resource languages, we attempt to align embeddings by fine-tuning pre-trained models via contrastive learning which shortens the distance between semantically similar sentences and increases the distance between dissimilar sentences. We experiment on Hausa, a low-resource language, in the WMT21 English-Hausa translation task. We conduct fine-tuning on three different pre-trained models (XLM-R, mBERT, LaBSE). Our experimental results show that our proposed method not only achieves higher correlation with human judgments than original BERTScore, but also surpass surface-based metrics such as BLEU, chrF, and the state-of-the-art metric COMET, when fine-tuning mBERT. Moreover, our proposed method generates better embeddings than pre-trained embedding models (E5, BGE, M3E) which are fine-tuned on different NLP tasks. We also extend our experiments to Chinese, a rich-resource language, in an English-Chinese translation task, and further confirms the effectiveness of our method. © 2013 IEEE.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
77739-77749
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85194853736