Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYPNCYTJL" target="_blank" >RIV/00216208:11320/25:YPNCYTJL - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199571930&partnerID=40&md5=5ee459fb2e1d6df5d849ddf6ecc0da70" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199571930&partnerID=40&md5=5ee459fb2e1d6df5d849ddf6ecc0da70</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark

  • Popis výsledku v původním jazyce

    We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 19 datasets annotated with named entities in a cross-lingual consistent schema across 13 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We will release the data, code, and fitted models to the public. ©2024 Association for Computational Linguistics.

  • Název v anglickém jazyce

    Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark

  • Popis výsledku anglicky

    We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 19 datasets annotated with named entities in a cross-lingual consistent schema across 13 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We will release the data, code, and fitted models to the public. ©2024 Association for Computational Linguistics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proc. Conf. North American Chapter Assoc. Comput. Linguist.: Hum. Lang. Technol., NAACL

  • ISBN

    979-889176114-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    16

  • Strana od-do

    4322-4337

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Hybrid, Mexico City

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku