Abstract meaning representation of Turkish
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AYYB88QUG" target="_blank" >RIV/00216208:11320/25:YYB88QUG - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:2PTZLRHA
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129562470&doi=10.1017%2fS1351324922000183&partnerID=40&md5=80f3050cb56fb74d1775c63ed8d82a2e" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129562470&doi=10.1017%2fS1351324922000183&partnerID=40&md5=80f3050cb56fb74d1775c63ed8d82a2e</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1351324922000183" target="_blank" >10.1017/S1351324922000183</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Abstract meaning representation of Turkish
Popis výsledku v původním jazyce
meaning representation (AMR) is a graph-based sentence-level meaning representation that has become highly popular in recent years. AMR is a knowledge-based meaning representation heavily relying on frame semantics for linking predicate frames and entity knowledge bases such as DBpedia for linking named entity concepts. Although it is originally designed for English, its adaptation to non-English languages is possible by defining language-specific divergences and representations. This article introduces the first AMR representation framework for Turkish, which poses diverse challenges for AMR due to its typological differences compared to English; agglutinative, free constituent order, morphologically highly rich resulting in fewer word surface forms in sentences. The introduced solutions to these peculiarities are expected to guide the studies for other similar languages and speed up the construction of a cross-lingual universal AMR framework. Besides this main contribution, the article also presents the construction of the first AMR corpus of 700 sentences, the first AMR parser (i.e., a tree-to-graph rule-based AMR parser) used for semi-automatic annotation, and the evaluation of the introduced resources for Turkish. © The Author(s), 2022.
Název v anglickém jazyce
Abstract meaning representation of Turkish
Popis výsledku anglicky
meaning representation (AMR) is a graph-based sentence-level meaning representation that has become highly popular in recent years. AMR is a knowledge-based meaning representation heavily relying on frame semantics for linking predicate frames and entity knowledge bases such as DBpedia for linking named entity concepts. Although it is originally designed for English, its adaptation to non-English languages is possible by defining language-specific divergences and representations. This article introduces the first AMR representation framework for Turkish, which poses diverse challenges for AMR due to its typological differences compared to English; agglutinative, free constituent order, morphologically highly rich resulting in fewer word surface forms in sentences. The introduced solutions to these peculiarities are expected to guide the studies for other similar languages and speed up the construction of a cross-lingual universal AMR framework. Besides this main contribution, the article also presents the construction of the first AMR corpus of 700 sentences, the first AMR parser (i.e., a tree-to-graph rule-based AMR parser) used for semi-automatic annotation, and the evaluation of the introduced resources for Turkish. © The Author(s), 2022.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Natural Language Engineering
ISSN
1351-3249
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
171-200
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85129562470