Student Drop-out Modelling Using Virtual Learning Environment Behaviour Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11410%2F18%3A10380975" target="_blank" >RIV/00216208:11410/18:10380975 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/18:00322655
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-319-98572-5_13" target="_blank" >https://doi.org/10.1007/978-3-319-98572-5_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-98572-5_13" target="_blank" >10.1007/978-3-319-98572-5_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Student Drop-out Modelling Using Virtual Learning Environment Behaviour Data
Popis výsledku v původním jazyce
With the rapid advancement of Virtual Learning Environments (VLE) in higher education, the amount of available student data grows. Universities collect the information about students, their demographics, their study results and their behaviour in the online environment. By applying modelling and predictive analysis methods it is possible to predict student outcome or detect bottlenecks in course design. Our work aims at statistical simulation of student behaviour in the VLE in order to identify behavioural patterns leading to drop-out or passive withdrawal i.e. the state when a student is not studying, but he has not actively withdrawn from studies. For that purpose, the method called Markov chain modelling has been used. Recorded student activities in VLE (VLE logs) has been used for constructing of probabilistic representation that students will perform some activity in the next week based on their activities in the current week. The result is an instance of the family of absorbing Markov chains, which can be analysed using the property called time to absorption. The preliminary results show that interesting patterns in student VLE behaviour can be uncovered, especially when combined with the information about submission of the first assessment. Our analysis has been performed using Open University Learning Analytics dataset (OULAD) and research notes are available online (https://bit.ly/2JrY5zv). (C) 2018, Springer Nature Switzerland AG.
Název v anglickém jazyce
Student Drop-out Modelling Using Virtual Learning Environment Behaviour Data
Popis výsledku anglicky
With the rapid advancement of Virtual Learning Environments (VLE) in higher education, the amount of available student data grows. Universities collect the information about students, their demographics, their study results and their behaviour in the online environment. By applying modelling and predictive analysis methods it is possible to predict student outcome or detect bottlenecks in course design. Our work aims at statistical simulation of student behaviour in the VLE in order to identify behavioural patterns leading to drop-out or passive withdrawal i.e. the state when a student is not studying, but he has not actively withdrawn from studies. For that purpose, the method called Markov chain modelling has been used. Recorded student activities in VLE (VLE logs) has been used for constructing of probabilistic representation that students will perform some activity in the next week based on their activities in the current week. The result is an instance of the family of absorbing Markov chains, which can be analysed using the property called time to absorption. The preliminary results show that interesting patterns in student VLE behaviour can be uncovered, especially when combined with the information about submission of the first assessment. Our analysis has been performed using Open University Learning Analytics dataset (OULAD) and research notes are available online (https://bit.ly/2JrY5zv). (C) 2018, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-04150Y" target="_blank" >GJ18-04150Y: Prediktivní modelování studentova výkonu s využitím výukových zdrojů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-319-98571-8
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
166-171
Název nakladatele
Springer Verlag
Místo vydání
Švýcarsko
Místo konání akce
Leeds, United Kingdom
Datum konání akce
3. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—