Effects of ignoring clustered data structure in confirmatory factor analysis of ordered polytomous items: a simulation study based on PANSS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11510%2F16%3A10313402" target="_blank" >RIV/00216208:11510/16:10313402 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/mpr.1474" target="_blank" >http://dx.doi.org/10.1002/mpr.1474</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mpr.1474" target="_blank" >10.1002/mpr.1474</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of ignoring clustered data structure in confirmatory factor analysis of ordered polytomous items: a simulation study based on PANSS
Popis výsledku v původním jazyce
Statistical theory indicates that hierarchical clustering by interviewers or raters needs to be considered to avoid incorrect inferences when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated Positive and Negative Syndrome Scale (PANSS) data to show the consequences (in terms of bias, variance andmean square error) of using an analysis ignoring clustering on confirmatory factor analysis (CFA) estimates. Our investigation includes the performance of different estimators, such as maximum likelihood, weighted least squares and Markov Chain Monte Carlo (MCMC). Our simulation results suggest that ignoring clustering may lead to serious bias of the estimated factor loadings, item thresholds, and corresponding standard errors in CFAs for ordinal item response data typical of that commonly encountered in psychiatric research. In addition, fit indices tend to show a poor fit for the hypothesized structural model. MCMC estimation may be more robust against clustering than maximum likelihood and weighted least squares approaches but further investigation of these issues is warranted in future simulation studies of other datasets. Copyright (C) 2015 John Wiley & Sons, Ltd.
Název v anglickém jazyce
Effects of ignoring clustered data structure in confirmatory factor analysis of ordered polytomous items: a simulation study based on PANSS
Popis výsledku anglicky
Statistical theory indicates that hierarchical clustering by interviewers or raters needs to be considered to avoid incorrect inferences when performing any analyses including regression, factor analysis (FA) or item response theory (IRT) modelling of binary or ordinal data. We use simulated Positive and Negative Syndrome Scale (PANSS) data to show the consequences (in terms of bias, variance andmean square error) of using an analysis ignoring clustering on confirmatory factor analysis (CFA) estimates. Our investigation includes the performance of different estimators, such as maximum likelihood, weighted least squares and Markov Chain Monte Carlo (MCMC). Our simulation results suggest that ignoring clustering may lead to serious bias of the estimated factor loadings, item thresholds, and corresponding standard errors in CFAs for ordinal item response data typical of that commonly encountered in psychiatric research. In addition, fit indices tend to show a poor fit for the hypothesized structural model. MCMC estimation may be more robust against clustering than maximum likelihood and weighted least squares approaches but further investigation of these issues is warranted in future simulation studies of other datasets. Copyright (C) 2015 John Wiley & Sons, Ltd.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Methods in Psychiatric Research
ISSN
1049-8931
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
205-219
Kód UT WoS článku
000383750200006
EID výsledku v databázi Scopus
2-s2.0-84932171762