Downscaling of species distribution models: a hierarchical approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F13%3A10188930" target="_blank" >RIV/00216208:11620/13:10188930 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1111/j.2041-210x.2012.00264.x" target="_blank" >http://dx.doi.org/10.1111/j.2041-210x.2012.00264.x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/j.2041-210x.2012.00264.x" target="_blank" >10.1111/j.2041-210x.2012.00264.x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Downscaling of species distribution models: a hierarchical approach
Popis výsledku v původním jazyce
1. Reliable methods to downscale species distributions from coarse to fine grain hold great potential benefit for ecology and conservation. Existing methods have been based on partially unrealistic assumptions and yield mixed results. 2. We introduce a novel and simple approach for downscaling species distribution models based on a hierarchical modelling framework. Our approach treats unknown fine-grain presences/absences as latent variables, which are modelled as a function of observed fine-grain environmental variables and constrained by observed coarse-grain presences/absences using logistic regression. The aim is to produce downscaled distributions that (1) closely resemble the probabilities produced by a logistic model parameterized with the observed fine-grain data (the 'reference model') and (2) are improvements over conventional downscaling methods. We additionally test how fine-grain occupancy based on power-law scale-area relationships modifies the downscaling results. We tes
Název v anglickém jazyce
Downscaling of species distribution models: a hierarchical approach
Popis výsledku anglicky
1. Reliable methods to downscale species distributions from coarse to fine grain hold great potential benefit for ecology and conservation. Existing methods have been based on partially unrealistic assumptions and yield mixed results. 2. We introduce a novel and simple approach for downscaling species distribution models based on a hierarchical modelling framework. Our approach treats unknown fine-grain presences/absences as latent variables, which are modelled as a function of observed fine-grain environmental variables and constrained by observed coarse-grain presences/absences using logistic regression. The aim is to produce downscaled distributions that (1) closely resemble the probabilities produced by a logistic model parameterized with the observed fine-grain data (the 'reference model') and (2) are improvements over conventional downscaling methods. We additionally test how fine-grain occupancy based on power-law scale-area relationships modifies the downscaling results. We tes
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Methods in Ecology and Evolution
ISSN
2041-210X
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
82-94
Kód UT WoS článku
000313993600010
EID výsledku v databázi Scopus
—