The renaissance of numbers: On continuity, nature of complex numbers and the symbolic turn
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F21%3A10440340" target="_blank" >RIV/00216208:11620/21:10440340 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qJ4GhnfH7T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qJ4GhnfH7T</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5507/aither.2020.005" target="_blank" >10.5507/aither.2020.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The renaissance of numbers: On continuity, nature of complex numbers and the symbolic turn
Popis výsledku v původním jazyce
The paper presents an analysis of imaginary quantity before Gauss based on the notion of continuity and symbolic representation. Its aim is to uncover subtle roots of the "impossible", "sophisticated" or "absurd" entities that, as we claim, stem from the Renaissance notion of nature and from the "symbolic turn" which occurred in that period. In order to grant impossible quantities a reasonable (operational) meaning, it is necessary to establish an equation (formal continuity) between real and imaginary. It is possible only if the real is in a sense subsumed within the symbolic which holds paradigmatically for the notions of number and magnitude. For, once number and magnitude become symbolic representations of the same universal intellectual matter of quantity, an operational analogy and continuity between them may be established. Three "continuities" shall be distinguished on the path to such "universal mathematics" at the end of which the imaginary entities may acquire the citizenship in the Republic of numbers.
Název v anglickém jazyce
The renaissance of numbers: On continuity, nature of complex numbers and the symbolic turn
Popis výsledku anglicky
The paper presents an analysis of imaginary quantity before Gauss based on the notion of continuity and symbolic representation. Its aim is to uncover subtle roots of the "impossible", "sophisticated" or "absurd" entities that, as we claim, stem from the Renaissance notion of nature and from the "symbolic turn" which occurred in that period. In order to grant impossible quantities a reasonable (operational) meaning, it is necessary to establish an equation (formal continuity) between real and imaginary. It is possible only if the real is in a sense subsumed within the symbolic which holds paradigmatically for the notions of number and magnitude. For, once number and magnitude become symbolic representations of the same universal intellectual matter of quantity, an operational analogy and continuity between them may be established. Three "continuities" shall be distinguished on the path to such "universal mathematics" at the end of which the imaginary entities may acquire the citizenship in the Republic of numbers.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aither [online]
ISSN
1803-7860
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
7/8
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
28
Strana od-do
58-85
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85116693736