Information feedback in temporal networks as a predictor of market crashes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F18%3A00494081" target="_blank" >RIV/00216208:11640/18:00494081 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1155/2018/2834680" target="_blank" >http://dx.doi.org/10.1155/2018/2834680</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2018/2834680" target="_blank" >10.1155/2018/2834680</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information feedback in temporal networks as a predictor of market crashes
Popis výsledku v původním jazyce
In complex systems, statistical dependencies between individual components are often considered one of the key mechanisms which drive the system dynamics observed on a macroscopic level. In this paper, we study cross-sectional time-lagged dependencies in financial markets, quantified by nonparametric measures from information theory, and estimate directed temporal dependency networks in financial markets. We examine the emergence of strongly connected feedback components in the estimated networks, and hypothesize that the existence of information feedback in financial networks induces strong spatiotemporal spillover effects and thus indicates systemic risk. We obtain empirical results by applying our methodology on stock market and real estate data, and demonstrate that the estimated networks exhibit strongly connected components around periods of high volatility in the markets. To further study this phenomenon, we construct a systemic risk indicator based on the proposed approach, and show that it can be used to predict future market distress. Results from both the stock market and real estate data suggest that our approach can be useful in obtaining early-warning signals for crashes in financial markets.
Název v anglickém jazyce
Information feedback in temporal networks as a predictor of market crashes
Popis výsledku anglicky
In complex systems, statistical dependencies between individual components are often considered one of the key mechanisms which drive the system dynamics observed on a macroscopic level. In this paper, we study cross-sectional time-lagged dependencies in financial markets, quantified by nonparametric measures from information theory, and estimate directed temporal dependency networks in financial markets. We examine the emergence of strongly connected feedback components in the estimated networks, and hypothesize that the existence of information feedback in financial networks induces strong spatiotemporal spillover effects and thus indicates systemic risk. We obtain empirical results by applying our methodology on stock market and real estate data, and demonstrate that the estimated networks exhibit strongly connected components around periods of high volatility in the markets. To further study this phenomenon, we construct a systemic risk indicator based on the proposed approach, and show that it can be used to predict future market distress. Results from both the stock market and real estate data suggest that our approach can be useful in obtaining early-warning signals for crashes in financial markets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Complexity
ISSN
1076-2787
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
2018
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000446019700001
EID výsledku v databázi Scopus
2-s2.0-85056463278