Copula shrinkage and portfolio allocation in ultra-high dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F22%3A00560357" target="_blank" >RIV/00216208:11640/22:00560357 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jedc.2022.104508" target="_blank" >https://doi.org/10.1016/j.jedc.2022.104508</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jedc.2022.104508" target="_blank" >10.1016/j.jedc.2022.104508</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Copula shrinkage and portfolio allocation in ultra-high dimensions
Popis výsledku v původním jazyce
Copulas prove to be a convenient tool in modeling joint distributions. As the data dimensionality grows, obtaining precise and well-conditioned estimates of copula-based distributions becomes a challenge. Currently, copula-based high dimensional settings are typically used for as many as a few hundred variables and require large data samples for estimation to be precise. In this paper, we handle the problem of estimation of Gaussian and t copulas in ultra-high dimensions, up to thousands of variables that use up to 30 times shorter sample lengths. Specifically, we employ recently developed large covariance matrix shrinkage tools to obtain precise and well-conditioned estimates of copula matrix parameters. Simulations show that shrinkage copulas significantly outperform traditional estimators, especially in high dimensions. We also illustrate benefits of this approach for the problem of allocation of large portfolios of stocks. Our experiments show that the shrinkage estimators applied to t copula-based dynamic models deliver better portfolios in terms of cumulative return and maximum downfall over portfolio lifetime than traditional benchmarks.
Název v anglickém jazyce
Copula shrinkage and portfolio allocation in ultra-high dimensions
Popis výsledku anglicky
Copulas prove to be a convenient tool in modeling joint distributions. As the data dimensionality grows, obtaining precise and well-conditioned estimates of copula-based distributions becomes a challenge. Currently, copula-based high dimensional settings are typically used for as many as a few hundred variables and require large data samples for estimation to be precise. In this paper, we handle the problem of estimation of Gaussian and t copulas in ultra-high dimensions, up to thousands of variables that use up to 30 times shorter sample lengths. Specifically, we employ recently developed large covariance matrix shrinkage tools to obtain precise and well-conditioned estimates of copula matrix parameters. Simulations show that shrinkage copulas significantly outperform traditional estimators, especially in high dimensions. We also illustrate benefits of this approach for the problem of allocation of large portfolios of stocks. Our experiments show that the shrinkage estimators applied to t copula-based dynamic models deliver better portfolios in terms of cumulative return and maximum downfall over portfolio lifetime than traditional benchmarks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-28055S" target="_blank" >GA20-28055S: EKONOMETRIE S PŘEPARAMETRIZOVANÝMI MODELY A SLABOU IDENTIFIKACÍ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Economic Dynamics & Control
ISSN
0165-1889
e-ISSN
1879-1743
Svazek periodika
143
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
104508
Kód UT WoS článku
000847422800006
EID výsledku v databázi Scopus
2-s2.0-85136064507