Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Shrinkage for Gaussian and t copulas in ultra-high dimensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F21%3A00545287" target="_blank" >RIV/00216208:11640/21:00545287 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985998:_____/21:00545259

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Shrinkage for Gaussian and t copulas in ultra-high dimensions

  • Popis výsledku v původním jazyce

    Copulas are a convenient framework to synthesize joint distributions, particularly in higher dimensions. Currently, copula-based high dimensional settings are used for as many as a few hundred variables and require large data samples for estimation to be precise. In this paper, we employ shrinkage techniques for large covariance matrices in the problem of estimation of Gaussian and t copulas whose dimensionality goes well beyond that typical in the literature. Specifically, we use the covariance matrix shrinkage of Ledoit and Wolf to estimate large matrix parameters of Gaussian and t copulas for up to thousands of variables, using up to 20 times lower sample sizes. The simulation study shows that the shrinkage estimation significantly outperforms traditional estimators, both in low and especially high dimensions. We also apply this approach to the problem of allocation of large portfolios.

  • Název v anglickém jazyce

    Shrinkage for Gaussian and t copulas in ultra-high dimensions

  • Popis výsledku anglicky

    Copulas are a convenient framework to synthesize joint distributions, particularly in higher dimensions. Currently, copula-based high dimensional settings are used for as many as a few hundred variables and require large data samples for estimation to be precise. In this paper, we employ shrinkage techniques for large covariance matrices in the problem of estimation of Gaussian and t copulas whose dimensionality goes well beyond that typical in the literature. Specifically, we use the covariance matrix shrinkage of Ledoit and Wolf to estimate large matrix parameters of Gaussian and t copulas for up to thousands of variables, using up to 20 times lower sample sizes. The simulation study shows that the shrinkage estimation significantly outperforms traditional estimators, both in low and especially high dimensions. We also apply this approach to the problem of allocation of large portfolios.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-28055S" target="_blank" >GA20-28055S: EKONOMETRIE S PŘEPARAMETRIZOVANÝMI MODELY A SLABOU IDENTIFIKACÍ</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů