In-depth evaluation of Romanian natural language processing pipelines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A90101%2F21%3A10441616" target="_blank" >RIV/00216208:90101/21:10441616 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4EPuFfhHFg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4EPuFfhHFg</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
In-depth evaluation of Romanian natural language processing pipelines
Popis výsledku v původním jazyce
With the increased size of Universal Dependencies tree banks, several basic language processing kits (BLARK) for multiple languages appeared in recent years, indicating improved performances on different languages. Nevertheless, published results are not directly comparable for the Romanian language since different tools make use of different Universal Dependencies versions and different additional resources, such as pre-trained word embeddings. In this paper, we re-train several state-of-the-art tools for processing Romanian language by using a common methodology comprising of training and evaluating on the same version of RoRefTrees corpus and using the same pre-trained word embeddings from the representative corpus of contemporary Romanian language (CoRoLa). Furthermore, we also explore the capabilities of the trained models when faced with unseen text from a different domain. For this purpose, we further test the resulting model on the SiMoNERo corpus. We employ different metrics to assess the performance on operations like tokenization, sentence splitting, lemmatization, part-of-speech tagging and dependency parsing.
Název v anglickém jazyce
In-depth evaluation of Romanian natural language processing pipelines
Popis výsledku anglicky
With the increased size of Universal Dependencies tree banks, several basic language processing kits (BLARK) for multiple languages appeared in recent years, indicating improved performances on different languages. Nevertheless, published results are not directly comparable for the Romanian language since different tools make use of different Universal Dependencies versions and different additional resources, such as pre-trained word embeddings. In this paper, we re-train several state-of-the-art tools for processing Romanian language by using a common methodology comprising of training and evaluating on the same version of RoRefTrees corpus and using the same pre-trained word embeddings from the representative corpus of contemporary Romanian language (CoRoLa). Furthermore, we also explore the capabilities of the trained models when faced with unseen text from a different domain. For this purpose, we further test the resulting model on the SiMoNERo corpus. We employ different metrics to assess the performance on operations like tokenization, sentence splitting, lemmatization, part-of-speech tagging and dependency parsing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Romanian Journal of Information Science and Technology
ISSN
1453-8245
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
18
Strana od-do
384-401
Kód UT WoS článku
000731880700004
EID výsledku v databázi Scopus
—