Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using a multilingual literary parallel corpus to train NMT systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A90244%2F24%3A10495709" target="_blank" >RIV/00216208:90244/24:10495709 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2024.ctt-1.1.pdf" target="_blank" >https://aclanthology.org/2024.ctt-1.1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using a multilingual literary parallel corpus to train NMT systems

  • Popis výsledku v původním jazyce

    This article presents an application of a multilingual and multidirectional parallel corpus composed of literary texts in five Romance languages (Spanish, French, Italian, Portuguese, Romanian) and a Slavic language (Croatian), with a total of 142,000 segments and 15.7 million words. After combining it with very large freely available parallel corpora, this resource is used to train NMT systems tailored to literature. A total of five NMT systems have been trained: Spanish-French, Spanish-Italian, Spanish-Portuguese, Spanish-Romanian and Spanish-Croatian. The trained systems were evaluated using automatic metrics (BLEU, chrF2 and TER) and a comparison with a rule-based MT system (Apertium) and a neural system (Google Translate) is presented. As a main conclusion, we can highlight that the use of this literary corpus has been very productive, as the majority of the trained systems achieve comparable, and in some cases even better, values of the automatic quality metrics than a widely used commercial NMT system.

  • Název v anglickém jazyce

    Using a multilingual literary parallel corpus to train NMT systems

  • Popis výsledku anglicky

    This article presents an application of a multilingual and multidirectional parallel corpus composed of literary texts in five Romance languages (Spanish, French, Italian, Portuguese, Romanian) and a Slavic language (Croatian), with a total of 142,000 segments and 15.7 million words. After combining it with very large freely available parallel corpora, this resource is used to train NMT systems tailored to literature. A total of five NMT systems have been trained: Spanish-French, Spanish-Italian, Spanish-Portuguese, Spanish-Romanian and Spanish-Croatian. The trained systems were evaluated using automatic metrics (BLEU, chrF2 and TER) and a comparison with a rule-based MT system (Apertium) and a neural system (Google Translate) is presented. As a main conclusion, we can highlight that the use of this literary corpus has been very productive, as the majority of the trained systems achieve comparable, and in some cases even better, values of the automatic quality metrics than a widely used commercial NMT system.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    60203 - Linguistics

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 1st Workshop on Creative-text Translation and Technology

  • ISBN

    978-1-06-869073-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Název nakladatele

    European Association for Machine Translation

  • Místo vydání

    Sheffield

  • Místo konání akce

    Sheffield

  • Datum konání akce

    27. 6. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku