Computer-aided Diagnostics of Schizophrenia: Comparison of Different Feature Extraction Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F17%3A00113794" target="_blank" >RIV/00216224:14110/17:00113794 - isvavai.cz</a>
Výsledek na webu
<a href="http://acta.uni-obuda.hu/Radomir_Daniel_76.pdf" target="_blank" >http://acta.uni-obuda.hu/Radomir_Daniel_76.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12700/APH.14.5.2017.5.12" target="_blank" >10.12700/APH.14.5.2017.5.12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computer-aided Diagnostics of Schizophrenia: Comparison of Different Feature Extraction Methods
Popis výsledku v původním jazyce
Receiving an early diagnosis of schizophrenia is a crucial step towards its treatment. However, in current thinking, the diagnosis is based on time-consuming criteria, burdened with subjectivity. Hence, objective and more reliable therapeutic tests are desirable for the clinical practice of Psychiatry. Since schizophrenia is characterized by progressive brain volume changes during the course of the disease, many studies have recently turned attention to machine learning and brain morphometric techniques serving as tools for computer-aided diagnosis of schizophrenia based on neuroimaging data. In our study, the methodology is applied to distinguish between 52 first-episode schizophrenia patients and 52 healthy volunteers on the basis of T1-weighted magnetic resonance images of their brains preprocessed by the means of voxel-based and deformation-based morphometry. The proposed classification schemes vary in the feature extraction and selection steps. Namely, Mann-Whitney testing is implemented as a simple univariate approach playing the role of a comparator to multivariate methods such as inter-subject PCA, the K-SVD algorithm, and pattern-based morphometry. The highest classification accuracy, 70%, is reached with the pattern-based morphometry technique. The study points out the difference between univariate and multivariate approaches towards neuroimaging data. Additionally, the contrast between feature extraction capabilities of voxel-based and deformation-based morphometry is demonstrated.
Název v anglickém jazyce
Computer-aided Diagnostics of Schizophrenia: Comparison of Different Feature Extraction Methods
Popis výsledku anglicky
Receiving an early diagnosis of schizophrenia is a crucial step towards its treatment. However, in current thinking, the diagnosis is based on time-consuming criteria, burdened with subjectivity. Hence, objective and more reliable therapeutic tests are desirable for the clinical practice of Psychiatry. Since schizophrenia is characterized by progressive brain volume changes during the course of the disease, many studies have recently turned attention to machine learning and brain morphometric techniques serving as tools for computer-aided diagnosis of schizophrenia based on neuroimaging data. In our study, the methodology is applied to distinguish between 52 first-episode schizophrenia patients and 52 healthy volunteers on the basis of T1-weighted magnetic resonance images of their brains preprocessed by the means of voxel-based and deformation-based morphometry. The proposed classification schemes vary in the feature extraction and selection steps. Namely, Mann-Whitney testing is implemented as a simple univariate approach playing the role of a comparator to multivariate methods such as inter-subject PCA, the K-SVD algorithm, and pattern-based morphometry. The highest classification accuracy, 70%, is reached with the pattern-based morphometry technique. The study points out the difference between univariate and multivariate approaches towards neuroimaging data. Additionally, the contrast between feature extraction capabilities of voxel-based and deformation-based morphometry is demonstrated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Polytechnica Hungarica
ISSN
1785-8860
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
16
Strana od-do
181-196
Kód UT WoS článku
000426127200012
EID výsledku v databázi Scopus
2-s2.0-85042332964