Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computer-aided Diagnostics of Schizophrenia: Comparison of Different Feature Extraction Methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F17%3A00113794" target="_blank" >RIV/00216224:14110/17:00113794 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://acta.uni-obuda.hu/Radomir_Daniel_76.pdf" target="_blank" >http://acta.uni-obuda.hu/Radomir_Daniel_76.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.12700/APH.14.5.2017.5.12" target="_blank" >10.12700/APH.14.5.2017.5.12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computer-aided Diagnostics of Schizophrenia: Comparison of Different Feature Extraction Methods

  • Popis výsledku v původním jazyce

    Receiving an early diagnosis of schizophrenia is a crucial step towards its treatment. However, in current thinking, the diagnosis is based on time-consuming criteria, burdened with subjectivity. Hence, objective and more reliable therapeutic tests are desirable for the clinical practice of Psychiatry. Since schizophrenia is characterized by progressive brain volume changes during the course of the disease, many studies have recently turned attention to machine learning and brain morphometric techniques serving as tools for computer-aided diagnosis of schizophrenia based on neuroimaging data. In our study, the methodology is applied to distinguish between 52 first-episode schizophrenia patients and 52 healthy volunteers on the basis of T1-weighted magnetic resonance images of their brains preprocessed by the means of voxel-based and deformation-based morphometry. The proposed classification schemes vary in the feature extraction and selection steps. Namely, Mann-Whitney testing is implemented as a simple univariate approach playing the role of a comparator to multivariate methods such as inter-subject PCA, the K-SVD algorithm, and pattern-based morphometry. The highest classification accuracy, 70%, is reached with the pattern-based morphometry technique. The study points out the difference between univariate and multivariate approaches towards neuroimaging data. Additionally, the contrast between feature extraction capabilities of voxel-based and deformation-based morphometry is demonstrated.

  • Název v anglickém jazyce

    Computer-aided Diagnostics of Schizophrenia: Comparison of Different Feature Extraction Methods

  • Popis výsledku anglicky

    Receiving an early diagnosis of schizophrenia is a crucial step towards its treatment. However, in current thinking, the diagnosis is based on time-consuming criteria, burdened with subjectivity. Hence, objective and more reliable therapeutic tests are desirable for the clinical practice of Psychiatry. Since schizophrenia is characterized by progressive brain volume changes during the course of the disease, many studies have recently turned attention to machine learning and brain morphometric techniques serving as tools for computer-aided diagnosis of schizophrenia based on neuroimaging data. In our study, the methodology is applied to distinguish between 52 first-episode schizophrenia patients and 52 healthy volunteers on the basis of T1-weighted magnetic resonance images of their brains preprocessed by the means of voxel-based and deformation-based morphometry. The proposed classification schemes vary in the feature extraction and selection steps. Namely, Mann-Whitney testing is implemented as a simple univariate approach playing the role of a comparator to multivariate methods such as inter-subject PCA, the K-SVD algorithm, and pattern-based morphometry. The highest classification accuracy, 70%, is reached with the pattern-based morphometry technique. The study points out the difference between univariate and multivariate approaches towards neuroimaging data. Additionally, the contrast between feature extraction capabilities of voxel-based and deformation-based morphometry is demonstrated.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Polytechnica Hungarica

  • ISSN

    1785-8860

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    HU - Maďarsko

  • Počet stran výsledku

    16

  • Strana od-do

    181-196

  • Kód UT WoS článku

    000426127200012

  • EID výsledku v databázi Scopus

    2-s2.0-85042332964