Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F19%3A00108524" target="_blank" >RIV/00216224:14110/19:00108524 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/65269705:_____/19:00071122
Výsledek na webu
<a href="http://dx.doi.org/10.1162/neco_a_01180" target="_blank" >http://dx.doi.org/10.1162/neco_a_01180</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/neco_a_01180" target="_blank" >10.1162/neco_a_01180</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia
Popis výsledku v původním jazyce
Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier-in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%-an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.
Název v anglickém jazyce
Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia
Popis výsledku anglicky
Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier-in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%-an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV17-33136A" target="_blank" >NV17-33136A: Neurominer: odhalování skrytých vzorů v datech ze zobrazování mozku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computation
ISSN
0899-7667
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
897-918
Kód UT WoS článku
000476941800004
EID výsledku v databázi Scopus
2-s2.0-85064454308