Wavelet Imaging Features for Classification of First-Episode Schizophrenia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F19%3A00120073" target="_blank" >RIV/00216224:14110/19:00120073 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-23762-2_25" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-23762-2_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-23762-2_25" target="_blank" >10.1007/978-3-030-23762-2_25</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wavelet Imaging Features for Classification of First-Episode Schizophrenia
Popis výsledku v původním jazyce
Recently, multiple attempts have been made to support computer diagnostics of neuropsychiatric disorders, using neuroimaging data and machine learning methods. This paper deals with the design and implementation of an algorithm for the analysis and classification of magnetic resonance imaging data for the purpose of computer-aided diagnosis of schizophrenia. Features for classification are first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM); and then transformed into a wavelet domain by discrete wavelet transform (DWT) with various numbers of decomposition levels. The number of features is reduced by thresholding and subsequent selection by: Fisher’s Discrimination Ratio, Bhattacharyya Distance, and Variances – a metric proposed in the literature recently. Support Vector Machine with a linear kernel is used here as a classifier. The evaluation strategy is based on leave-one-out cross-validation. The highest classification accuracy – 73.08% – was achieved with 1000 features extracted by VBM and DWT at four decomposition levels and selected by Fisher’s Discrimination Ratio and Bhattacharyya distance. In the case of DBM features, the classifier achieved the highest accuracy of 72.12% with 5000 discriminating features, five decomposition levels and the use of Fisher’s Discrimination Ratio.
Název v anglickém jazyce
Wavelet Imaging Features for Classification of First-Episode Schizophrenia
Popis výsledku anglicky
Recently, multiple attempts have been made to support computer diagnostics of neuropsychiatric disorders, using neuroimaging data and machine learning methods. This paper deals with the design and implementation of an algorithm for the analysis and classification of magnetic resonance imaging data for the purpose of computer-aided diagnosis of schizophrenia. Features for classification are first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM); and then transformed into a wavelet domain by discrete wavelet transform (DWT) with various numbers of decomposition levels. The number of features is reduced by thresholding and subsequent selection by: Fisher’s Discrimination Ratio, Bhattacharyya Distance, and Variances – a metric proposed in the literature recently. Support Vector Machine with a linear kernel is used here as a classifier. The evaluation strategy is based on leave-one-out cross-validation. The highest classification accuracy – 73.08% – was achieved with 1000 features extracted by VBM and DWT at four decomposition levels and selected by Fisher’s Discrimination Ratio and Bhattacharyya distance. In the case of DBM features, the classifier achieved the highest accuracy of 72.12% with 5000 discriminating features, five decomposition levels and the use of Fisher’s Discrimination Ratio.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV17-33136A" target="_blank" >NV17-33136A: Neurominer: odhalování skrytých vzorů v datech ze zobrazování mozku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Technology in Biomedicine, ITIB 2019, Kamień Śląski, Poland, 18-20 June, 2019
ISBN
9783030237615
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
12
Strana od-do
280-291
Název nakladatele
Springer
Místo vydání
Kamień Śląski, Poland
Místo konání akce
Kamien Slaski
Datum konání akce
17. 6. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000618044200025