Analysis of Historical Medical Phenomena Using Large N-Gram Corpora
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F17%3A00113795" target="_blank" >RIV/00216224:14110/17:00113795 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/978-1-61499-830-3-437" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-830-3-437</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-830-3-437" target="_blank" >10.3233/978-1-61499-830-3-437</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Historical Medical Phenomena Using Large N-Gram Corpora
Popis výsledku v původním jazyce
Historically, numerous indirect references to real world phenomena have been conserved in literature. High-quality libraries of digitized books and their derivatives (like the Google NGram Viewer) have proliferated. These tools simplify, the visualization of trends in phrase usage within the collective memory of language groups. A straightforward interpretation of these frequency changes is, however, too simplistic to draw conclusions about the underlying reality because it is affected by several sources of bias. Although these resources have been studied in social sciences and psychology, there is still lack of user-friendly, yet rigorous methods for analysis of phenomena relevant for medicine. We present a methodological framework to study relationships of observable phenomena quantitatively over periods, which span over centuries. We discuss its suitability for knowledge extraction from current and future large-scale, book-derived, n-gram collections.
Název v anglickém jazyce
Analysis of Historical Medical Phenomena Using Large N-Gram Corpora
Popis výsledku anglicky
Historically, numerous indirect references to real world phenomena have been conserved in literature. High-quality libraries of digitized books and their derivatives (like the Google NGram Viewer) have proliferated. These tools simplify, the visualization of trends in phrase usage within the collective memory of language groups. A straightforward interpretation of these frequency changes is, however, too simplistic to draw conclusions about the underlying reality because it is affected by several sources of bias. Although these resources have been studied in social sciences and psychology, there is still lack of user-friendly, yet rigorous methods for analysis of phenomena relevant for medicine. We present a methodological framework to study relationships of observable phenomena quantitatively over periods, which span over centuries. We discuss its suitability for knowledge extraction from current and future large-scale, book-derived, n-gram collections.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Medinfo 2017: Precision healthcare through informatics: proceedings of the 16th World Congress on Medical and Health Informatics
ISBN
9781614998297
ISSN
0926-9630
e-ISSN
—
Počet stran výsledku
5
Strana od-do
437-441
Název nakladatele
IOS PRESS
Místo vydání
AMSTERDAM
Místo konání akce
Xiamen
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449471200091