Benchmarking of additive manufacturing technologies for commerciallypure-titanium bone-tissue-engineering scaffolds: processing-microstructureproperty relationship
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F20%3A00117940" target="_blank" >RIV/00216224:14110/20:00117940 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/20:PU137232
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2214860420308885?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214860420308885?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.addma.2020.101516" target="_blank" >10.1016/j.addma.2020.101516</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking of additive manufacturing technologies for commerciallypure-titanium bone-tissue-engineering scaffolds: processing-microstructureproperty relationship
Popis výsledku v původním jazyce
This work provides the benchmarking of two additive manufacturing (AM) technologies suitable for the fabrication of commercially pure titanium scaffolds for bone tissue engineering, i.e., selective laser melting (SLM) and robocasting. SLM is a powder bed fusion technique that is industrially used for the AM of titanium parts, whereas robocasting is an extrusion technique mainly studied for the fabrication of ceramic scaffolds that requires post-sintering for the consolidation. A novelty of this work is to combine robocasting with pressure-less spark plasma sintering (PL-SPS) for the fabrication and fast consolidation of titanium scaffolds. The results show that the metallurgical phenomena occurring in both techniques are different. Melting and fast solidification in SLM produced martensitic-like microstructure of titanium with low microporosity (6 %). In contrast, solid-state sintering in robocasting resulted in the equiaxed grain microstructure of alpha titanium phase with 13 % of microporosity. The mechanical performance of the scaffolds was determined by the microporosity of the rods rather than microstructure. Consequently, robocasting resulted in lower compressive yield strength and effective elastic modulus than SLM, which were in the range of human trabecular bone. Finally, both AM technologies produced cytocompatible scaffolds that showed evidence of in vitro osteogenic activity.
Název v anglickém jazyce
Benchmarking of additive manufacturing technologies for commerciallypure-titanium bone-tissue-engineering scaffolds: processing-microstructureproperty relationship
Popis výsledku anglicky
This work provides the benchmarking of two additive manufacturing (AM) technologies suitable for the fabrication of commercially pure titanium scaffolds for bone tissue engineering, i.e., selective laser melting (SLM) and robocasting. SLM is a powder bed fusion technique that is industrially used for the AM of titanium parts, whereas robocasting is an extrusion technique mainly studied for the fabrication of ceramic scaffolds that requires post-sintering for the consolidation. A novelty of this work is to combine robocasting with pressure-less spark plasma sintering (PL-SPS) for the fabrication and fast consolidation of titanium scaffolds. The results show that the metallurgical phenomena occurring in both techniques are different. Melting and fast solidification in SLM produced martensitic-like microstructure of titanium with low microporosity (6 %). In contrast, solid-state sintering in robocasting resulted in the equiaxed grain microstructure of alpha titanium phase with 13 % of microporosity. The mechanical performance of the scaffolds was determined by the microporosity of the rods rather than microstructure. Consequently, robocasting resulted in lower compressive yield strength and effective elastic modulus than SLM, which were in the range of human trabecular bone. Finally, both AM technologies produced cytocompatible scaffolds that showed evidence of in vitro osteogenic activity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADDITIVE MANUFACTURING
ISSN
2214-8604
e-ISSN
2214-7810
Svazek periodika
36
Číslo periodika v rámci svazku
DEC 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000600807800102
EID výsledku v databázi Scopus
2-s2.0-85090421883