Pictorial Aspects of Mathematical Notation in Wittgenstein: Numbers and Proofs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F13%3A00072270" target="_blank" >RIV/00216224:14210/13:00072270 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pictorial Aspects of Mathematical Notation in Wittgenstein: Numbers and Proofs
Popis výsledku v původním jazyce
The core in Wittgenstein's conception of mathematics can be summed up in the motto that "arithmetical rules are statements of internal relations". (PPO, p. 390) I am going to focus on Wittgenstein's insistence on a certain pictorial aspect of mathematical notation, which is, of course, his Tractarian heritage. Mathematical notation must always be capable to depicture a state of affairs. This is true of numbers, but also of mathematical proofs. Numbers and proofs are for Wittgenstein a sort of prototypesof certain activities. (1) The pictorial aspect of numerals is expressed in the key definition of a cardinal number: "A cardinal number is an internal property of a list". (PR, p. 140) Wittgenstein's concrete and finitistic approach takes numeral for concrete objects as opposed to Frege-Russell's approach based on abstract sets.
Název v anglickém jazyce
Pictorial Aspects of Mathematical Notation in Wittgenstein: Numbers and Proofs
Popis výsledku anglicky
The core in Wittgenstein's conception of mathematics can be summed up in the motto that "arithmetical rules are statements of internal relations". (PPO, p. 390) I am going to focus on Wittgenstein's insistence on a certain pictorial aspect of mathematical notation, which is, of course, his Tractarian heritage. Mathematical notation must always be capable to depicture a state of affairs. This is true of numbers, but also of mathematical proofs. Numbers and proofs are for Wittgenstein a sort of prototypesof certain activities. (1) The pictorial aspect of numerals is expressed in the key definition of a cardinal number: "A cardinal number is an internal property of a list". (PR, p. 140) Wittgenstein's concrete and finitistic approach takes numeral for concrete objects as opposed to Frege-Russell's approach based on abstract sets.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
AA - Filosofie a náboženství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů