Pictorial aspects of mathematical notation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F18%3A00105162" target="_blank" >RIV/00216224:14210/18:00105162 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pictorial aspects of mathematical notation
Popis výsledku v původním jazyce
The core in Wittgenstein’s conception of mathematics can be summed up in the motto that “arithmetical rules are statements of internal relations.” (PPO: p. 390) I am going to focus on Wittgenstein’s insistence on a certain pictorial aspect of mathematical notation, which is, of course, his Tractarian heritage. Mathematical notation must always be capable to depicture a state of affairs. This is true of numbers, but also of mathematical proofs. Numbers and proofs are for Wittgenstein a sort of prototypes of certain activities. Mathematical propositions are statements of internal relations as well. A proof of a mathematical proposition aims to picture or rather lay down its internal relatedness to a system of other mathematical rules. We may say that “the completely analysed mathematical proposition is its own proof.” (PR: p. 192) Proof is so a picture of an experiment, even more “it can be thought of as a cinematographic picture” (RFM: p. 159).
Název v anglickém jazyce
Pictorial aspects of mathematical notation
Popis výsledku anglicky
The core in Wittgenstein’s conception of mathematics can be summed up in the motto that “arithmetical rules are statements of internal relations.” (PPO: p. 390) I am going to focus on Wittgenstein’s insistence on a certain pictorial aspect of mathematical notation, which is, of course, his Tractarian heritage. Mathematical notation must always be capable to depicture a state of affairs. This is true of numbers, but also of mathematical proofs. Numbers and proofs are for Wittgenstein a sort of prototypes of certain activities. Mathematical propositions are statements of internal relations as well. A proof of a mathematical proposition aims to picture or rather lay down its internal relatedness to a system of other mathematical rules. We may say that “the completely analysed mathematical proposition is its own proof.” (PR: p. 192) Proof is so a picture of an experiment, even more “it can be thought of as a cinematographic picture” (RFM: p. 159).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů