Annotation of Multi-Word Expressions in Czech Texts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F15%3A00085165" target="_blank" >RIV/00216224:14210/15:00085165 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Annotation of Multi-Word Expressions in Czech Texts
Popis výsledku v původním jazyce
Multi-word expressions (MWEs) are difficult to define and also difficult to annotate. Some of them cause serious errors in the traditional annotation pipeline tokenization - morphological analysis - morphological disambiguation. Many cases of incorrect annotation in Czech corpora are known. To narrow the research topic, we focus only in fixed MWEs ? those with fixed word order and no ellidable components. In this paper, we propose a corpus-based method that reveals fixed MWE candidates. From the web-based corpus of Czech, we extracted 25,091 expressions, 2,140 of them were identified as MWEs, 332 as probable MWEs, and 174 of them can be either MWEs or one single word. Our method is based on corpus data observation that indicates that people are unsurewhen writing a MWE whether it is one word, a word with dashes, or several words. The result is a list of MWE candidates and also an application that classifies the input as MWE, probable MWE, or non-MWE.
Název v anglickém jazyce
Annotation of Multi-Word Expressions in Czech Texts
Popis výsledku anglicky
Multi-word expressions (MWEs) are difficult to define and also difficult to annotate. Some of them cause serious errors in the traditional annotation pipeline tokenization - morphological analysis - morphological disambiguation. Many cases of incorrect annotation in Czech corpora are known. To narrow the research topic, we focus only in fixed MWEs ? those with fixed word order and no ellidable components. In this paper, we propose a corpus-based method that reveals fixed MWE candidates. From the web-based corpus of Czech, we extracted 25,091 expressions, 2,140 of them were identified as MWEs, 332 as probable MWEs, and 174 of them can be either MWEs or one single word. Our method is based on corpus data observation that indicates that people are unsurewhen writing a MWE whether it is one word, a word with dashes, or several words. The result is a list of MWE candidates and also an application that classifies the input as MWE, probable MWE, or non-MWE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AI - Jazykověda
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7F14047" target="_blank" >7F14047: Harvesting big text data for under-resourced languages</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Ninth Workshop on Recent Advances in Slavonic Natural Language Processing
ISBN
9788026309741
ISSN
2336-4289
e-ISSN
—
Počet stran výsledku
10
Strana od-do
103-112
Název nakladatele
Tribun EU
Místo vydání
Brno
Místo konání akce
Karlova Studánka
Datum konání akce
1. 1. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—