Puzzles of Existential Generalisation from Type-theoretic Perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F22%3A00129199" target="_blank" >RIV/00216224:14210/22:00129199 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/2204.06726v1" target="_blank" >https://arxiv.org/abs/2204.06726v1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4204/EPTCS.358.6" target="_blank" >10.4204/EPTCS.358.6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Puzzles of Existential Generalisation from Type-theoretic Perspective
Popis výsledku v původním jazyce
The present paper addresses several puzzles related to the Rule of Existential Generalization, (EG). In solution to these puzzles from the viewpoint of simple type theory, I distinguish (EG) from a modified Rule of Existential Quantifier Introduction which is derivable from (EG). Both these rules are often confused and both are considered as primitive but I show that (EG) itself is derivable from the proper Rule of Existential Quantifier Introduction. Moreover, the latter rule must be primitive in logical systems that treat both total and partial functions, for the universal and the existential quantifiers are not interdefinable in them. An appropriate natural deduction for such a system is deployed. The present logical system is simpler than the system recently proposed and applied by the present author. It utilises an adequate definition of substitution which is capable of handling not only a higher-order quantification, but also (hyper)intensional contexts.
Název v anglickém jazyce
Puzzles of Existential Generalisation from Type-theoretic Perspective
Popis výsledku anglicky
The present paper addresses several puzzles related to the Rule of Existential Generalization, (EG). In solution to these puzzles from the viewpoint of simple type theory, I distinguish (EG) from a modified Rule of Existential Quantifier Introduction which is derivable from (EG). Both these rules are often confused and both are considered as primitive but I show that (EG) itself is derivable from the proper Rule of Existential Quantifier Introduction. Moreover, the latter rule must be primitive in logical systems that treat both total and partial functions, for the universal and the existential quantifiers are not interdefinable in them. An appropriate natural deduction for such a system is deployed. The present logical system is simpler than the system recently proposed and applied by the present author. It utilises an adequate definition of substitution which is capable of handling not only a higher-order quantification, but also (hyper)intensional contexts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12420S" target="_blank" >GA19-12420S: Hyperintenzionální význam, teorie typů a logická dedukce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
10th International Conference on Non-Classical Logics. Theory and Applications (NCL 2022) Electronic Proceedings in Theoretical Computer Science (EPTCS) 358
ISBN
—
ISSN
2075-2180
e-ISSN
—
Počet stran výsledku
16
Strana od-do
68-83
Název nakladatele
Logic in Computer Science
Místo vydání
Cornell Univeristy (USA), UNSW Austrálie
Místo konání akce
Lodz (PL)
Datum konání akce
14. 3. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—