Visualizing COVID-19 : an analytical model to understand and compose continuously evolving data visualization projects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14230%2F22%3A00127717" target="_blank" >RIV/00216224:14230/22:00127717 - isvavai.cz</a>
Výsledek na webu
<a href="https://medialnistudia.fsv.cuni.cz/front.file/download?file=2022%2001%2004%20kadakas.pdf" target="_blank" >https://medialnistudia.fsv.cuni.cz/front.file/download?file=2022%2001%2004%20kadakas.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visualizing COVID-19 : an analytical model to understand and compose continuously evolving data visualization projects
Popis výsledku v původním jazyce
The increased demand for information during the Covid-19 pandemic inspired projects to describe the pandemic’s progress via data visualization. Critically analyzing the published data visualization projects (DVPs) contributes to establishing a framework that supports both understanding and composing DVPs that evolve over time. Drawing upon constructed grounded theory, we develop an analytical model for creating DVPs in a journalistic or public communication context. For our analysis, we selected Covid-19 public service media DVPs in the United Kingdom, Norway, Sweden and Estonia as well as DVPs created by global and local data activists. The analysis of these examples provides an understanding of (1) the implied agency standing of the authors of the visualizations, (2) the kinds of editorial layer (data, visual representation, annotation or interactivity) that inform the creation process and (3) what newsrooms and data visualizers can learn from this practice to create understandable, meaningful and engaging DVPs of (critical) events that evolve over an extended period. Our model supports data visualization practitioners in making informed choices when creating data stories.
Název v anglickém jazyce
Visualizing COVID-19 : an analytical model to understand and compose continuously evolving data visualization projects
Popis výsledku anglicky
The increased demand for information during the Covid-19 pandemic inspired projects to describe the pandemic’s progress via data visualization. Critically analyzing the published data visualization projects (DVPs) contributes to establishing a framework that supports both understanding and composing DVPs that evolve over time. Drawing upon constructed grounded theory, we develop an analytical model for creating DVPs in a journalistic or public communication context. For our analysis, we selected Covid-19 public service media DVPs in the United Kingdom, Norway, Sweden and Estonia as well as DVPs created by global and local data activists. The analysis of these examples provides an understanding of (1) the implied agency standing of the authors of the visualizations, (2) the kinds of editorial layer (data, visual representation, annotation or interactivity) that inform the creation process and (3) what newsrooms and data visualizers can learn from this practice to create understandable, meaningful and engaging DVPs of (critical) events that evolve over an extended period. Our model supports data visualization practitioners in making informed choices when creating data stories.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50800 - Media and communications
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0016952" target="_blank" >EF18_053/0016952: Postdoc2MUNI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mediální studia / Media Studies
ISSN
1801-9978
e-ISSN
2464-4846
Svazek periodika
16
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
27
Strana od-do
65-91
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85138646785