Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F03%3A00008168" target="_blank" >RIV/00216224:14310/03:00008168 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions

  • Popis výsledku v původním jazyce

    This paper contains a complete characterization of the nonnegativity of a discrete quadratic functional with one endpoint allowed to vary. In particular, we derive the exact form and explain the role of the (strengthened) Legendre condition in the discrete calculus of variations. Under this condition, the nonnegativity the quadratic functional is <i> equivalent </i> to each of the following conditions: the nonexistence of intervals conjugate to 0, the existence of a certain conjoined basis of the associated Jacobi difference equation, the nonnegativity of certain recurrence matrices, and, under a natural additional assumption, the existence of a symmetric solution to the Riccati matrix difference equation. Moreover, an extension of the discrete Legendre condition is derived for the given discrete variational problem.

  • Název v anglickém jazyce

    Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions

  • Popis výsledku anglicky

    This paper contains a complete characterization of the nonnegativity of a discrete quadratic functional with one endpoint allowed to vary. In particular, we derive the exact form and explain the role of the (strengthened) Legendre condition in the discrete calculus of variations. Under this condition, the nonnegativity the quadratic functional is <i> equivalent </i> to each of the following conditions: the nonexistence of intervals conjugate to 0, the existence of a certain conjoined basis of the associated Jacobi difference equation, the nonnegativity of certain recurrence matrices, and, under a natural additional assumption, the existence of a symmetric solution to the Riccati matrix difference equation. Moreover, an extension of the discrete Legendre condition is derived for the given discrete variational problem.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F01%2F0079" target="_blank" >GA201/01/0079: Kvalitativní teorie řešení diferenčních rovnic</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2003

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers & mathematics with applications

  • ISSN

    0097-4943

  • e-ISSN

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    6-9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1369-1383

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus