Calculation of the tilts of curved lines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F03%3A00008885" target="_blank" >RIV/00216224:14310/03:00008885 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/03:12030008
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Calculation of the tilts of curved lines
Popis výsledku v původním jazyce
Two methods for calculating a ratio of tilts of the curved lines are presented. The first one consists in singular value decomposition of the data matrix. If the variability in the data is caused by single effect, i.e., the first singular value is about99 times larger than the second one, than the first loadings vector reflects the ratio of tilts. As the useful variants of this method the evolving and gliding calculation on the reduced data matrices were investigated. The other method comprises the Fourier transform of the data matrix. Only the first coefficient is used for each transformed vector of the data matrix. Its real and imaginary part can be calculated easy by multiplication and summation of suitable cosine and sine functions, respectively.In this cos-sine method each vector is represented by two co-ordinates (xf, yf) of a point and the whole data matrix can be visualised as a cluster of point which can be circumscribed by confidence ellipses. If the shorter half-axis in su
Název v anglickém jazyce
Calculation of the tilts of curved lines
Popis výsledku anglicky
Two methods for calculating a ratio of tilts of the curved lines are presented. The first one consists in singular value decomposition of the data matrix. If the variability in the data is caused by single effect, i.e., the first singular value is about99 times larger than the second one, than the first loadings vector reflects the ratio of tilts. As the useful variants of this method the evolving and gliding calculation on the reduced data matrices were investigated. The other method comprises the Fourier transform of the data matrix. Only the first coefficient is used for each transformed vector of the data matrix. Its real and imaginary part can be calculated easy by multiplication and summation of suitable cosine and sine functions, respectively.In this cos-sine method each vector is represented by two co-ordinates (xf, yf) of a point and the whole data matrix can be visualised as a cluster of point which can be circumscribed by confidence ellipses. If the shorter half-axis in su
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemomometrics and Inteligent Laboratory Systems
ISSN
0169-7439
e-ISSN
—
Svazek periodika
67
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
59-67
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—