Sdružené intervaly v diskrétním optimálním řízení
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F04%3A00011340" target="_blank" >RIV/00216224:14310/04:00011340 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coupled intervals in the discrete optimal control
Popis výsledku v původním jazyce
In this paper, we investigate the nonnegativity and positivity of a quadratic functional <math><i> I </i></math> with variable (i.e., separable and jointly varying) endpoints in the discrete <i> optimal control </i> setting. We introduce a <i> coupled interval </i> notion, which generalizes (i) the conjugate interval notion known for the fixed right endpoint case, and (ii) the coupled interval notion known in the discrete <i> calculus of variations </i>. We prove necessary and sufficient conditions forthe nonnegativity and positivity of <math><i> I </i></math> in terms of the nonexistence of such coupled intervals. Furthermore, we characterize the nonnegativity of <math><i> I </i></math> in terms of the (previously known notions of) conjugate intervals, a conjoined basis of the associated linear Hamiltonian system, and the solvability of an implicit Riccati equation. This completes the results for the nonnegativity that are parallel to the known ones on the positivity of <
Název v anglickém jazyce
Coupled intervals in the discrete optimal control
Popis výsledku anglicky
In this paper, we investigate the nonnegativity and positivity of a quadratic functional <math><i> I </i></math> with variable (i.e., separable and jointly varying) endpoints in the discrete <i> optimal control </i> setting. We introduce a <i> coupled interval </i> notion, which generalizes (i) the conjugate interval notion known for the fixed right endpoint case, and (ii) the coupled interval notion known in the discrete <i> calculus of variations </i>. We prove necessary and sufficient conditions forthe nonnegativity and positivity of <math><i> I </i></math> in terms of the nonexistence of such coupled intervals. Furthermore, we characterize the nonnegativity of <math><i> I </i></math> in terms of the (previously known notions of) conjugate intervals, a conjoined basis of the associated linear Hamiltonian system, and the solvability of an implicit Riccati equation. This completes the results for the nonnegativity that are parallel to the known ones on the positivity of <
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F01%2F0079" target="_blank" >GA201/01/0079: Kvalitativní teorie řešení diferenčních rovnic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
36
Strana od-do
151-186
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—