Reprezentace variační posloupnosti diferenciálními formami
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00012697" target="_blank" >RIV/00216224:14310/05:00012697 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representation of the Variational Sequence by Differential Forms
Popis výsledku v původním jazyce
In the paper the representation of the finite order variational sequence on fibered manifolds in field theory is studied. The representation problem is completely solved by a generalization of the integration by parts procedure using the concept of Lie derivative of forms with respect to vector fields along canonial maps of prolongatios of fibered manifolds. A close relationship between the obtained coordinate invariant representation of the variational sequence and some familiar objects of physics, such as Lagrangians, dynamical forms, Euler-Lagrange mapping and Helmholtz-Sonin mapping is pointed out and illustrated by examples.
Název v anglickém jazyce
Representation of the Variational Sequence by Differential Forms
Popis výsledku anglicky
In the paper the representation of the finite order variational sequence on fibered manifolds in field theory is studied. The representation problem is completely solved by a generalization of the integration by parts procedure using the concept of Lie derivative of forms with respect to vector fields along canonial maps of prolongatios of fibered manifolds. A close relationship between the obtained coordinate invariant representation of the variational sequence and some familiar objects of physics, such as Lagrangians, dynamical forms, Euler-Lagrange mapping and Helmholtz-Sonin mapping is pointed out and illustrated by examples.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F0512" target="_blank" >GA201/03/0512: Geometrická analýza a její aplikace ve fyzice</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Applicandae Mathematicae
ISSN
0167-8019
e-ISSN
—
Svazek periodika
88 / 2005
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
177-199
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—