Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Symplektické systémy na time scales bez předpokladu normality

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00015384" target="_blank" >RIV/00216224:14310/06:00015384 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Time scale symplectic systems without normality

  • Popis výsledku v původním jazyce

    We present a theory of the definiteness (nonnegativity and positivity) of a quadratic functional F over a bounded time scale. The results are given in terms of a time scale symplectic system (S), which is a time scale linear system that generalizes and unifies the linear Hamiltonian differential system and discrete symplectic system. The novelty of this paper resides in removing the assumption of normality in the characterization of the positivity of F, and in establishing equivalent conditions for thenonnegativity of F without any normality assumption. To reach this goal, a new notion of generalized focal points for conjoined bases (X,U) of (S) is introduced, results on the piecewise-constant kernel of X(t) are obtained, and various Picone-type identities are derived under the piecewise-constant kernel condition. The results of this paper generalize and unify recent ones in each of the discrete and continuous time setting, and constitute a keystone for further development in this the

  • Název v anglickém jazyce

    Time scale symplectic systems without normality

  • Popis výsledku anglicky

    We present a theory of the definiteness (nonnegativity and positivity) of a quadratic functional F over a bounded time scale. The results are given in terms of a time scale symplectic system (S), which is a time scale linear system that generalizes and unifies the linear Hamiltonian differential system and discrete symplectic system. The novelty of this paper resides in removing the assumption of normality in the characterization of the positivity of F, and in establishing equivalent conditions for thenonnegativity of F without any normality assumption. To reach this goal, a new notion of generalized focal points for conjoined bases (X,U) of (S) is introduced, results on the piecewise-constant kernel of X(t) are obtained, and various Picone-type identities are derived under the piecewise-constant kernel condition. The results of this paper generalize and unify recent ones in each of the discrete and continuous time setting, and constitute a keystone for further development in this the

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Svazek periodika

    230

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    34

  • Strana od-do

    140-173

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus