Klasifikace stimulů podle křivek stimulus-odpověď a jejich variabilitě
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00024208" target="_blank" >RIV/00216224:14310/08:00024208 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985823:_____/08:00311439
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of stimuli based on stimulus-response curves and their variability
Popis výsledku v původním jazyce
Neuronal responses evoked in sensory neurons by static stimuli of various intensities are usually characterized by their input-output transfer function, i.e. by plotting the firing frequency (or any other measurable neuron response) versus the corresponding stimulus intensity. The aim of the present article is to determine the stimulus intensities which can be considered as "the most important" from two different points of view: transferring as much information as possible and coding the intensity as precisely as possible. These two problems are very different because, for example, an informative signal may be difficult to identify. We show that the role of noise is crucial in both problems. To obtain the range of stimuli which are the best identified,we propose to use measures based on Fisher information as known from the theory of statistical inference. To classify the most important stimuli from the point of view of information transfer, we suggest methods based on information theo
Název v anglickém jazyce
Classification of stimuli based on stimulus-response curves and their variability
Popis výsledku anglicky
Neuronal responses evoked in sensory neurons by static stimuli of various intensities are usually characterized by their input-output transfer function, i.e. by plotting the firing frequency (or any other measurable neuron response) versus the corresponding stimulus intensity. The aim of the present article is to determine the stimulus intensities which can be considered as "the most important" from two different points of view: transferring as much information as possible and coding the intensity as precisely as possible. These two problems are very different because, for example, an informative signal may be difficult to identify. We show that the role of noise is crucial in both problems. To obtain the range of stimuli which are the best identified,we propose to use measures based on Fisher information as known from the theory of statistical inference. To classify the most important stimuli from the point of view of information transfer, we suggest methods based on information theo
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Brain Research
ISSN
0006-8993
e-ISSN
—
Svazek periodika
Volume 122
Číslo periodika v rámci svazku
srpen 2008
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000258954600007
EID výsledku v databázi Scopus
—