Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00025612" target="_blank" >RIV/00216224:14310/08:00025612 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry
Popis výsledku v původním jazyce
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semidensities to semidensities. We find a local formula for the Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold withantisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraintson an extended manifold.
Název v anglickém jazyce
Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry
Popis výsledku anglicky
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semidensities to semidensities. We find a local formula for the Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold withantisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraintson an extended manifold.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Svazek periodika
2008
Číslo periodika v rámci svazku
49 043516
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
—
Kód UT WoS článku
000255456400040
EID výsledku v databázi Scopus
—