Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Comparative Study of Laplacians and Schroedinger-Lichnerowicz-Weitzenboeck Identities in Riemannian and Antisymplectic Geometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00034160" target="_blank" >RIV/00216224:14310/09:00034160 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Comparative Study of Laplacians and Schroedinger-Lichnerowicz-Weitzenboeck Identities in Riemannian and Antisymplectic Geometry

  • Popis výsledku v původním jazyce

    We introduce an antisymplectic Dirac operator and antisymplectic gamma matrices. We explore similarities between, on one hand, the Schroedinger--Lichnerowicz formula for spinor bundles in Riemannian spin geometry, which contains a zeroth--order term proportional to the Levi--Civita scalar curvature, and, on the other hand, the nilpotent, Grassmann--odd, second--order Delta operator in antisymplectic geometry, which in general has a zeroth--order term proportional to the odd scalar curvature of an arbitrary antisymplectic and torsionfree connection that is compatible with the measure density. Finally, we discuss the close relationship with the two--loop scalar curvature term in the quantum Hamiltonian for a particle in a curved Riemannian space.

  • Název v anglickém jazyce

    A Comparative Study of Laplacians and Schroedinger-Lichnerowicz-Weitzenboeck Identities in Riemannian and Antisymplectic Geometry

  • Popis výsledku anglicky

    We introduce an antisymplectic Dirac operator and antisymplectic gamma matrices. We explore similarities between, on one hand, the Schroedinger--Lichnerowicz formula for spinor bundles in Riemannian spin geometry, which contains a zeroth--order term proportional to the Levi--Civita scalar curvature, and, on the other hand, the nilpotent, Grassmann--odd, second--order Delta operator in antisymplectic geometry, which in general has a zeroth--order term proportional to the odd scalar curvature of an arbitrary antisymplectic and torsionfree connection that is compatible with the measure density. Finally, we discuss the close relationship with the two--loop scalar curvature term in the quantum Hamiltonian for a particle in a curved Riemannian space.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Svazek periodika

    2009

  • Číslo periodika v rámci svazku

    50 073504

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    51

  • Strana od-do

  • Kód UT WoS článku

    000268614500023

  • EID výsledku v databázi Scopus