Quality indexes of predictive models in risk and portfolio management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00036102" target="_blank" >RIV/00216224:14310/09:00036102 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quality indexes of predictive models in risk and portfolio management
Popis výsledku v původním jazyce
For a measurement of partial processes of a financial institution, especially their components like scoring models or other predictive models, it is possible to use quantitative indexes such as Gini index, K-S statistics, Lift and Information statistics.They can be used for comparison of several developed models at the moment of development. It is possible to use them for monitoring of quality of models after the deployment into real business as well. The outcome is then an effective tool to attract new creditworthy customers, and at the same time, control losses. This paper deals with definition of good/bad client, which is crucial for further computations. The main part is devoted to quality indexes based on distribution functions and on density functions. It brings some interesting results connected to Lift in general and for normally distributed data. An application on real data is included too.
Název v anglickém jazyce
Quality indexes of predictive models in risk and portfolio management
Popis výsledku anglicky
For a measurement of partial processes of a financial institution, especially their components like scoring models or other predictive models, it is possible to use quantitative indexes such as Gini index, K-S statistics, Lift and Information statistics.They can be used for comparison of several developed models at the moment of development. It is possible to use them for monitoring of quality of models after the deployment into real business as well. The outcome is then an effective tool to attract new creditworthy customers, and at the same time, control losses. This paper deals with definition of good/bad client, which is crucial for further computations. The main part is devoted to quality indexes based on distribution functions and on density functions. It brings some interesting results connected to Lift in general and for normally distributed data. An application on real data is included too.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IMAEF 2009 Proceedings
ISBN
978-960-233-196-5
ISSN
1791-9800
e-ISSN
—
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
Department of Economics, University of Ioannina
Místo vydání
Ioannina, Greece
Místo konání akce
Ioannina, Greece
Datum konání akce
11. 6. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—