Measuring the Quality of Credit Scoring Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00036504" target="_blank" >RIV/00216224:14310/09:00036504 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Measuring the Quality of Credit Scoring Models
Popis výsledku v původním jazyce
In the current strong competitive environment it is quite fundamental good care of the quality of client portfolio. Credit scoring models are widely used to achieve this business aim. For a measurement of quality of the scoring models it is possible to use quantitative indexes such as Gini index, K-S statistics, Lift, Mahalanobis distance and Information statistics. They can be used for comparison of several developed models at the moment of development. It is possible to use them for monitoring of quality of models after the deployment into real business as well. Figures like ROC curve (Lorenz curve), Lift chart (Gains chart) can be used as well. This paper deals with definition of good/bad client, which is crucial for further computations. Parametersaffecting this definition are discussed. The main part is devoted to quality indexes based on distribution functions (Gini, K-S and Lift) and on density functions (Mahalanobis distance, Information statistics).
Název v anglickém jazyce
Measuring the Quality of Credit Scoring Models
Popis výsledku anglicky
In the current strong competitive environment it is quite fundamental good care of the quality of client portfolio. Credit scoring models are widely used to achieve this business aim. For a measurement of quality of the scoring models it is possible to use quantitative indexes such as Gini index, K-S statistics, Lift, Mahalanobis distance and Information statistics. They can be used for comparison of several developed models at the moment of development. It is possible to use them for monitoring of quality of models after the deployment into real business as well. Figures like ROC curve (Lorenz curve), Lift chart (Gains chart) can be used as well. This paper deals with definition of good/bad client, which is crucial for further computations. Parametersaffecting this definition are discussed. The main part is devoted to quality indexes based on distribution functions (Gini, K-S and Lift) and on density functions (Mahalanobis distance, Information statistics).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů