Oscillation theorems and Rayleigh principle for linear Hamiltonian and symplectic systems with general boundary conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00059256" target="_blank" >RIV/00216224:14310/12:00059256 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.amc.2012.01.056" target="_blank" >http://dx.doi.org/10.1016/j.amc.2012.01.056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2012.01.056" target="_blank" >10.1016/j.amc.2012.01.056</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Oscillation theorems and Rayleigh principle for linear Hamiltonian and symplectic systems with general boundary conditions
Popis výsledku v původním jazyce
The aim of this paper is to establish the oscillation theorems, Rayleigh principle, and coercivity results for linear Hamiltonian and symplectic systems with general boundary conditions, i.e., for the case of separated and jointly varying endpoints, andwith no controllability (normality) and strong observability assumptions. Our method is to consider the time interval as a time scale and apply suitable time scales techniques to reduce the problem with separated endpoints into a problem with Dirichlet boundary conditions, and the problem with jointly varying endpoints into a problem with separated endpoints. These more general results on time scales then provide new results for the continuous time linear Hamiltonian systems as well as for the discretesymplectic systems. This paper also solves an open problem of deriving the oscillation theorem for problems with periodic boundary conditions.
Název v anglickém jazyce
Oscillation theorems and Rayleigh principle for linear Hamiltonian and symplectic systems with general boundary conditions
Popis výsledku anglicky
The aim of this paper is to establish the oscillation theorems, Rayleigh principle, and coercivity results for linear Hamiltonian and symplectic systems with general boundary conditions, i.e., for the case of separated and jointly varying endpoints, andwith no controllability (normality) and strong observability assumptions. Our method is to consider the time interval as a time scale and apply suitable time scales techniques to reduce the problem with separated endpoints into a problem with Dirichlet boundary conditions, and the problem with jointly varying endpoints into a problem with separated endpoints. These more general results on time scales then provide new results for the continuous time linear Hamiltonian systems as well as for the discretesymplectic systems. This paper also solves an open problem of deriving the oscillation theorem for problems with periodic boundary conditions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ME%20891" target="_blank" >ME 891: Podmínky optimality druhého řádu pro optimalizační problémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Svazek periodika
218
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
8309-8328
Kód UT WoS článku
000302769100009
EID výsledku v databázi Scopus
—