Dynamic effect algebras and their representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00062906" target="_blank" >RIV/00216224:14310/12:00062906 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/12:33145905
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00500-012-0857-x" target="_blank" >http://dx.doi.org/10.1007/s00500-012-0857-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-012-0857-x" target="_blank" >10.1007/s00500-012-0857-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic effect algebras and their representations
Popis výsledku v původním jazyce
For lattice effect algebras, the so-called tense operators were already introduced by Chajda and KolaA (TM) ik. Tense operators express the quantifiers "it is always going to be the case that" and "it has always been the case that" and hence enable us toexpress the dimension of time in the logic of quantum mechanics. We present an axiomatization of these tense operators and prove that in every effect algebra can be introduced tense operators which, for non-complete lattice effect algebras, can be onlypartial mappings. An effect algebra equipped with tense operators reflects changes of quantum events from past to future. A crucial problem concerning tense operators is their representation. Having an effect algebra with tense operators, we can ask if there exists a frame such that each of these operators can be obtained by our construction. We solve this problem for (strict) dynamic effect algebras having a full set of homorphisms into a complete lattice effect algebra.
Název v anglickém jazyce
Dynamic effect algebras and their representations
Popis výsledku anglicky
For lattice effect algebras, the so-called tense operators were already introduced by Chajda and KolaA (TM) ik. Tense operators express the quantifiers "it is always going to be the case that" and "it has always been the case that" and hence enable us toexpress the dimension of time in the logic of quantum mechanics. We present an axiomatization of these tense operators and prove that in every effect algebra can be introduced tense operators which, for non-complete lattice effect algebras, can be onlypartial mappings. An effect algebra equipped with tense operators reflects changes of quantum events from past to future. A crucial problem concerning tense operators is their representation. Having an effect algebra with tense operators, we can ask if there exists a frame such that each of these operators can be obtained by our construction. We solve this problem for (strict) dynamic effect algebras having a full set of homorphisms into a complete lattice effect algebra.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraické metody v kvantové logice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soft computing
ISSN
1432-7643
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1733-1741
Kód UT WoS článku
000308532700009
EID výsledku v databázi Scopus
—