Indeterminate values of target variable in development of credit scoring models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00069259" target="_blank" >RIV/00216224:14310/13:00069259 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.11118/actaun201361072709" target="_blank" >http://dx.doi.org/10.11118/actaun201361072709</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201361072709" target="_blank" >10.11118/actaun201361072709</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Indeterminate values of target variable in development of credit scoring models
Popis výsledku v původním jazyce
In the beginning of every modelling procedure, the first question to ask is what we are trying to predict by the model. In credit scoring the most frequent case is modelling of probability of default; however other situations, such as fraud, revolving ofthe credit or success of collections could be predicted as well. Nevertheless, the first step is always to define the target variable. The target variable is generally an ?output? of the model. It contains the information on the available data that we want to predict in future data. In credit scoring it is commonly called good/bad definition. In this paper we study the effect of use of indeterminate value of target variable in development of credit scoring models. We explain the basic principles of logistic regression modelling and selection of target variable. Next, the focus is given to introduction of some of the widely used statistics for model assessment.
Název v anglickém jazyce
Indeterminate values of target variable in development of credit scoring models
Popis výsledku anglicky
In the beginning of every modelling procedure, the first question to ask is what we are trying to predict by the model. In credit scoring the most frequent case is modelling of probability of default; however other situations, such as fraud, revolving ofthe credit or success of collections could be predicted as well. Nevertheless, the first step is always to define the target variable. The target variable is generally an ?output? of the model. It contains the information on the available data that we want to predict in future data. In credit scoring it is commonly called good/bad definition. In this paper we study the effect of use of indeterminate value of target variable in development of credit scoring models. We explain the basic principles of logistic regression modelling and selection of target variable. Next, the focus is given to introduction of some of the widely used statistics for model assessment.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta universitatis agriculturae et silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
2709-2716
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—