Time scale symplectic systems with analytic dependence on spectral parameter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00080616" target="_blank" >RIV/00216224:14310/15:00080616 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/10236198.2014.997227" target="_blank" >http://dx.doi.org/10.1080/10236198.2014.997227</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2014.997227" target="_blank" >10.1080/10236198.2014.997227</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time scale symplectic systems with analytic dependence on spectral parameter
Popis výsledku v původním jazyce
This paper is devoted to the study of time scale symplectic systems with polynomial and analytic dependence on the complex spectral parameter lambda. We derive fundamental properties of these systems (including the Lagrange identity) and discuss their connection with systems known in the literature, in particular with linear Hamiltonian systems. In analogy with the linear dependence on lambda, we present a construction of the Weyl disks and determine the number of linearly independent square integrablesolutions. These results extend the discrete time theory considered recently by the authors. To our knowledge, in the continuous time case this concept is new. We also establish the invariance of the limit circle case for a special quadratic dependence on lambda and its extension to two (generally nonsymplectic) time scale systems, which yields new results also in the discrete case. The theory is illustrated by several examples.
Název v anglickém jazyce
Time scale symplectic systems with analytic dependence on spectral parameter
Popis výsledku anglicky
This paper is devoted to the study of time scale symplectic systems with polynomial and analytic dependence on the complex spectral parameter lambda. We derive fundamental properties of these systems (including the Lagrange identity) and discuss their connection with systems known in the literature, in particular with linear Hamiltonian systems. In analogy with the linear dependence on lambda, we present a construction of the Weyl disks and determine the number of linearly independent square integrablesolutions. These results extend the discrete time theory considered recently by the authors. To our knowledge, in the continuous time case this concept is new. We also establish the invariance of the limit circle case for a special quadratic dependence on lambda and its extension to two (generally nonsymplectic) time scale systems, which yields new results also in the discrete case. The theory is illustrated by several examples.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
31
Strana od-do
209-239
Kód UT WoS článku
000350570500003
EID výsledku v databázi Scopus
—