Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00082089" target="_blank" >RIV/00216224:14310/15:00082089 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G43__/15:00520703
Výsledek na webu
<a href="http://dx.doi.org/10.1177/1748006X14547789" target="_blank" >http://dx.doi.org/10.1177/1748006X14547789</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1748006X14547789" target="_blank" >10.1177/1748006X14547789</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data
Popis výsledku v původním jazyce
At present, numerous approaches are devoted to monitoring a system state. Their intention is to determine the current state of a system and predict reliability parameters for the future. This article addresses one of the several possible approaches thatallows us to determine a system technical state on the basis of diagnostic data. These diagnostic data are from the area of tribiodagnostics, namely, engine oil. The article examines iron and lead particles that are selected deliberately with respect totheir origin in kinematic parts of the system and their degree of correlation with operation measures. The particles occur in oil during both operating time and calendar time development. To model their occurrence during operation time, we have used, inthe first part of the article, a mathematical regression method to set parameters. In the second part, we have applied a diffusion model based on a Wiener process. The results confirm that we are able to estimate the residual technical li
Název v anglickém jazyce
Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data
Popis výsledku anglicky
At present, numerous approaches are devoted to monitoring a system state. Their intention is to determine the current state of a system and predict reliability parameters for the future. This article addresses one of the several possible approaches thatallows us to determine a system technical state on the basis of diagnostic data. These diagnostic data are from the area of tribiodagnostics, namely, engine oil. The article examines iron and lead particles that are selected deliberately with respect totheir origin in kinematic parts of the system and their degree of correlation with operation measures. The particles occur in oil during both operating time and calendar time development. To model their occurrence during operation time, we have used, inthe first part of the article, a mathematical regression method to set parameters. In the second part, we have applied a diffusion model based on a Wiener process. The results confirm that we are able to estimate the residual technical li
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
ISSN
1748-006X
e-ISSN
—
Svazek periodika
229
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
36-45
Kód UT WoS článku
000349221400004
EID výsledku v databázi Scopus
—