Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of fuzzy inference system for analysis of oil field data to optimize combustion engine maintenance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F19%3A00536532" target="_blank" >RIV/60162694:G43__/19:00536532 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26210/19:PU131472

  • Výsledek na webu

    <a href="https://journals.sagepub.com/doi/abs/10.1177/0954407019833521" target="_blank" >https://journals.sagepub.com/doi/abs/10.1177/0954407019833521</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/0954407019833521" target="_blank" >10.1177/0954407019833521</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of fuzzy inference system for analysis of oil field data to optimize combustion engine maintenance

  • Popis výsledku v původním jazyce

    The condition of a technical system has been subject to intense scrutiny in recent years. Monitoring the technical condition of a system may be performed by applying different approaches. The main intention of the monitoring is to get the information about the instant system condition, and to estimate and predict reliability measures. In the article, the authors suggest possible ways to process diagnostic measures which have the potential to determine the system condition and to predict its future development. The diagnostic measures are in this case indirect and they are introduced in the form of oil data. The diagnostic data are obtained from the tribodiagnostic system which is composed of kinematic pairs and oil. The analysed oil samples come from the combustion engine of a heavy ground vehicle. The authors focus on the output values in the form of wear particles, iron and lead, and additive particles. The concentration of these particles in the oil is influenced by operating time and calendar time. However, the particles include inherent and natural levels of uncertainty and fuzziness. Therefore, the authors apply and present the models imitating the development of the particles which are based on a fuzzy inference system. Highly valuable and extensive data set records enabled the authors to perform two-dimensional data modelling based both on operation time and calendar time. The obtained results enable us to predict the remaining useful life of the system. Moreover, the results could also be beneficial when modifying hard time scheduled preventive maintenance intervals (e.g. when to change the oil). The major contribution of this paper is the fact that all analysed diagnostic data are not artificial but real; moreover, they were collected for more than 10 years and therefore contain hundreds of records.

  • Název v anglickém jazyce

    Application of fuzzy inference system for analysis of oil field data to optimize combustion engine maintenance

  • Popis výsledku anglicky

    The condition of a technical system has been subject to intense scrutiny in recent years. Monitoring the technical condition of a system may be performed by applying different approaches. The main intention of the monitoring is to get the information about the instant system condition, and to estimate and predict reliability measures. In the article, the authors suggest possible ways to process diagnostic measures which have the potential to determine the system condition and to predict its future development. The diagnostic measures are in this case indirect and they are introduced in the form of oil data. The diagnostic data are obtained from the tribodiagnostic system which is composed of kinematic pairs and oil. The analysed oil samples come from the combustion engine of a heavy ground vehicle. The authors focus on the output values in the form of wear particles, iron and lead, and additive particles. The concentration of these particles in the oil is influenced by operating time and calendar time. However, the particles include inherent and natural levels of uncertainty and fuzziness. Therefore, the authors apply and present the models imitating the development of the particles which are based on a fuzzy inference system. Highly valuable and extensive data set records enabled the authors to perform two-dimensional data modelling based both on operation time and calendar time. The obtained results enable us to predict the remaining useful life of the system. Moreover, the results could also be beneficial when modifying hard time scheduled preventive maintenance intervals (e.g. when to change the oil). The major contribution of this paper is the fact that all analysed diagnostic data are not artificial but real; moreover, they were collected for more than 10 years and therefore contain hundreds of records.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

  • ISSN

    0954-4070

  • e-ISSN

    2041-2991

  • Svazek periodika

    233

  • Číslo periodika v rámci svazku

    14

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    3736-3745

  • Kód UT WoS článku

    000496739000013

  • EID výsledku v databázi Scopus

    2-s2.0-85062474858