HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00089158" target="_blank" >RIV/00216224:14310/16:00089158 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7349202" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7349202</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIFS.2015.2506542" target="_blank" >10.1109/TIFS.2015.2506542</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users
Popis výsledku v původním jazyce
We introduce hand movement, orientation, and grasp (HMOG), a set of behavioral features to continuously authenticate smartphone users. HMOG features unobtrusively capture subtle micro-movement and orientation dynamics resulting from how a user grasps, holds, and taps on the smartphone. We evaluated authentication and biometric key generation (BKG) performance of HMOG features on data collected from 100 subjects typing on a virtual keyboard. Data were collected under two conditions: 1) sitting and 2) walking. We achieved authentication equal error rates (EERs) as low as 7.16% (walking) and 10.05% (sitting) when we combined HMOG, tap, and keystroke features. We performed experiments to investigate why HMOG features perform well during walking. Our results suggest that this is due to the ability of HMOG features to capture distinctive body movements caused by walking, in addition to the hand-movement dynamics from taps. With BKG, we achieved the EERs of 15.1% using HMOG combined with taps.
Název v anglickém jazyce
HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users
Popis výsledku anglicky
We introduce hand movement, orientation, and grasp (HMOG), a set of behavioral features to continuously authenticate smartphone users. HMOG features unobtrusively capture subtle micro-movement and orientation dynamics resulting from how a user grasps, holds, and taps on the smartphone. We evaluated authentication and biometric key generation (BKG) performance of HMOG features on data collected from 100 subjects typing on a virtual keyboard. Data were collected under two conditions: 1) sitting and 2) walking. We achieved authentication equal error rates (EERs) as low as 7.16% (walking) and 10.05% (sitting) when we combined HMOG, tap, and keystroke features. We performed experiments to investigate why HMOG features perform well during walking. Our results suggest that this is due to the ability of HMOG features to capture distinctive body movements caused by walking, in addition to the hand-movement dynamics from taps. With BKG, we achieved the EERs of 15.1% using HMOG combined with taps.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Information Forensics and Security
ISSN
1556-6013
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
877-892
Kód UT WoS článku
000372355200001
EID výsledku v databázi Scopus
—