TAPSTROKE: A novel intelligent authentication system using tap frequencies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015775" target="_blank" >RIV/62690094:18450/19:50015775 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417419304646" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417419304646</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2019.06.057" target="_blank" >10.1016/j.eswa.2019.06.057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TAPSTROKE: A novel intelligent authentication system using tap frequencies
Popis výsledku v původním jazyce
Emerging security requirements lead to new validation protocols to be implemented to recent authentication systems by employing biometric traits instead of regular passwords. If an additional security is required in authentication phase, keystroke recognition and classification systems and related interfaces are very promising for collecting and classifying biometric traits. These systems generally operate in time-domain; however, the conventional time-domain solutions could be inadequate if a touchscreen is so small to enter any kind of alphanumeric passwords or a password consists of one single character like a tap to the screen. Therefore, we propose a novel frequency-based authentication system, TAPSTROKE, as a prospective protocol for small touchscreens and an alternative authentication methodology for existing devices. We firstly analyzed the binary train signals formed by tap passwords consisting of taps instead of alphanumeric digits by the regular (SIFT) and modified short time Fourier transformations (mSTFT). The unique biometric feature extracted from a tap signal is the frequency-time localization achieved by the spectrograms which are generated by these transformations. The touch signals, generated from the same tap-password, create significantly different spectrograms for predetermined window sizes. Finally, we conducted several experiments to distinguish future attempts by one-class support vector machines (SVM) with a simple linear kernel for Hamming and Blackman window functions. The experiments are greatly encouraging that we achieved 1.40%-2.12% and 2.01%-3.21% equal error rates (EER) with mSTFT; while with regular SIFT the classifiers produced quite higher EER, 7.49%-11.95% and 6.93%-10.12%, with Hamming and Blackman window functions, separately. The whole methodology, as an expert system for protecting the users from fraud attacks sheds light on new era of authentication systems for future smart gears and watches. (C) 2019 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
TAPSTROKE: A novel intelligent authentication system using tap frequencies
Popis výsledku anglicky
Emerging security requirements lead to new validation protocols to be implemented to recent authentication systems by employing biometric traits instead of regular passwords. If an additional security is required in authentication phase, keystroke recognition and classification systems and related interfaces are very promising for collecting and classifying biometric traits. These systems generally operate in time-domain; however, the conventional time-domain solutions could be inadequate if a touchscreen is so small to enter any kind of alphanumeric passwords or a password consists of one single character like a tap to the screen. Therefore, we propose a novel frequency-based authentication system, TAPSTROKE, as a prospective protocol for small touchscreens and an alternative authentication methodology for existing devices. We firstly analyzed the binary train signals formed by tap passwords consisting of taps instead of alphanumeric digits by the regular (SIFT) and modified short time Fourier transformations (mSTFT). The unique biometric feature extracted from a tap signal is the frequency-time localization achieved by the spectrograms which are generated by these transformations. The touch signals, generated from the same tap-password, create significantly different spectrograms for predetermined window sizes. Finally, we conducted several experiments to distinguish future attempts by one-class support vector machines (SVM) with a simple linear kernel for Hamming and Blackman window functions. The experiments are greatly encouraging that we achieved 1.40%-2.12% and 2.01%-3.21% equal error rates (EER) with mSTFT; while with regular SIFT the classifiers produced quite higher EER, 7.49%-11.95% and 6.93%-10.12%, with Hamming and Blackman window functions, separately. The whole methodology, as an expert system for protecting the users from fraud attacks sheds light on new era of authentication systems for future smart gears and watches. (C) 2019 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
136
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
426-438
Kód UT WoS článku
000484871300034
EID výsledku v databázi Scopus
—