Frequency spectrograms for biometric keystroke authentication using neural network based classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50005535" target="_blank" >RIV/62690094:18450/17:50005535 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0950705116304439" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0950705116304439</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2016.11.006" target="_blank" >10.1016/j.knosys.2016.11.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Frequency spectrograms for biometric keystroke authentication using neural network based classifier
Popis výsledku v původním jazyce
Keystroke recognition is one of the branch of biometrics that is designed to strengthen regular passwords through inter-key times to protect the password owner from fraud attacks. The signals of keystrokes are usually evaluated only in the time domain since the applied systems collect and analyze only the time values. In addition to these kinds of algorithms, we introduce the extraction of novel frequency feature and a keystroke authentication system which has a classifier operating in frequency domain. The frequency extraction is a new approach that will enhance the authentication protocols and shed light on the keystroke authentication by providing a hidden security level. Above all, instead of inter-key times, the exact key press times are extracted and binarized in time domain. Subsequently, the spectrograms are generated by regular short time Fourier transform with the optimized window size. Since the spectrograms include both frequency and time data, represented as images, low frequencies under a threshold are erased and the high frequencies are collected in bins after the digitization. Consequently the average bin values are used as the inputs to train the Gauss-Newton based Neural Network classifier to validate the attempts. The results are highly promising that we obtained 4.1% Equal Error Rate (EER) after 60 real attempts of the password owner and 60 fraud attacks from 12 different users. The outcomes of this research enhance our understanding of knowledge-based classifiers for authentication as well as the Gauss-Newton based optimization for vectorial inputs of spectrogram analysis.
Název v anglickém jazyce
Frequency spectrograms for biometric keystroke authentication using neural network based classifier
Popis výsledku anglicky
Keystroke recognition is one of the branch of biometrics that is designed to strengthen regular passwords through inter-key times to protect the password owner from fraud attacks. The signals of keystrokes are usually evaluated only in the time domain since the applied systems collect and analyze only the time values. In addition to these kinds of algorithms, we introduce the extraction of novel frequency feature and a keystroke authentication system which has a classifier operating in frequency domain. The frequency extraction is a new approach that will enhance the authentication protocols and shed light on the keystroke authentication by providing a hidden security level. Above all, instead of inter-key times, the exact key press times are extracted and binarized in time domain. Subsequently, the spectrograms are generated by regular short time Fourier transform with the optimized window size. Since the spectrograms include both frequency and time data, represented as images, low frequencies under a threshold are erased and the high frequencies are collected in bins after the digitization. Consequently the average bin values are used as the inputs to train the Gauss-Newton based Neural Network classifier to validate the attempts. The results are highly promising that we obtained 4.1% Equal Error Rate (EER) after 60 real attempts of the password owner and 60 fraud attacks from 12 different users. The outcomes of this research enhance our understanding of knowledge-based classifiers for authentication as well as the Gauss-Newton based optimization for vectorial inputs of spectrogram analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-based systems
ISSN
0950-7051
e-ISSN
—
Svazek periodika
116
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
163-171
Kód UT WoS článku
000392770400015
EID výsledku v databázi Scopus
2-s2.0-85006253036