Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Biometric keystroke barcoding: A next-gen authentication framework

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018012" target="_blank" >RIV/62690094:18450/21:50018012 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0957417421004218?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417421004218?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2021.114980" target="_blank" >10.1016/j.eswa.2021.114980</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Biometric keystroke barcoding: A next-gen authentication framework

  • Popis výsledku v původním jazyce

    Investigation of new intelligent solutions for user identification and authentication is and will be essential for enhancing the security of the alphanumeric passwords entered on touchscreen and traditional keyboards. Extraction of the keystrokes has been very beneficial given the intelligent authentication protocols operating in time-domain; while the time-domain solutions drastically lose their efficiency over time due to converging inter-key times. Realistically reflecting the habitual traits, the frequency-domain solutions, however, reveal unique biometric characteristics better, without any risk of convergence. On the contrary, the existing frequency-based frameworks don&apos;t provide storable biometric data for further classification of the attempts. Therefore, we propose a novel barcoding framework converting habitual biometric information into storable barcodes as very low-size barcode images. The key-press times are extracted and turned into pseudo-signals exhibiting binary-train characteristics for continuous wavelet transformation (CWT). The transformed signals are primarily categorized with 4-scale scalograms by various complex frequency B-spline wavelets and subsequently superposed to create the unique barcodes. One-class support vector machines (SVM) is employed as the main classifier for training and testing the barcodes and very promising results are achieved given the lowest equal error rate (EER) of 1.83%. © 2021 Elsevier Ltd

  • Název v anglickém jazyce

    Biometric keystroke barcoding: A next-gen authentication framework

  • Popis výsledku anglicky

    Investigation of new intelligent solutions for user identification and authentication is and will be essential for enhancing the security of the alphanumeric passwords entered on touchscreen and traditional keyboards. Extraction of the keystrokes has been very beneficial given the intelligent authentication protocols operating in time-domain; while the time-domain solutions drastically lose their efficiency over time due to converging inter-key times. Realistically reflecting the habitual traits, the frequency-domain solutions, however, reveal unique biometric characteristics better, without any risk of convergence. On the contrary, the existing frequency-based frameworks don&apos;t provide storable biometric data for further classification of the attempts. Therefore, we propose a novel barcoding framework converting habitual biometric information into storable barcodes as very low-size barcode images. The key-press times are extracted and turned into pseudo-signals exhibiting binary-train characteristics for continuous wavelet transformation (CWT). The transformed signals are primarily categorized with 4-scale scalograms by various complex frequency B-spline wavelets and subsequently superposed to create the unique barcodes. One-class support vector machines (SVM) is employed as the main classifier for training and testing the barcodes and very promising results are achieved given the lowest equal error rate (EER) of 1.83%. © 2021 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert systems with applications

  • ISSN

    0957-4174

  • e-ISSN

  • Svazek periodika

    177

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    "Article number 114980"

  • Kód UT WoS článku

    000663300400004

  • EID výsledku v databázi Scopus

    2-s2.0-85103945632