Biometric keystroke barcoding: A next-gen authentication framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018012" target="_blank" >RIV/62690094:18450/21:50018012 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417421004218?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417421004218?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2021.114980" target="_blank" >10.1016/j.eswa.2021.114980</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biometric keystroke barcoding: A next-gen authentication framework
Popis výsledku v původním jazyce
Investigation of new intelligent solutions for user identification and authentication is and will be essential for enhancing the security of the alphanumeric passwords entered on touchscreen and traditional keyboards. Extraction of the keystrokes has been very beneficial given the intelligent authentication protocols operating in time-domain; while the time-domain solutions drastically lose their efficiency over time due to converging inter-key times. Realistically reflecting the habitual traits, the frequency-domain solutions, however, reveal unique biometric characteristics better, without any risk of convergence. On the contrary, the existing frequency-based frameworks don't provide storable biometric data for further classification of the attempts. Therefore, we propose a novel barcoding framework converting habitual biometric information into storable barcodes as very low-size barcode images. The key-press times are extracted and turned into pseudo-signals exhibiting binary-train characteristics for continuous wavelet transformation (CWT). The transformed signals are primarily categorized with 4-scale scalograms by various complex frequency B-spline wavelets and subsequently superposed to create the unique barcodes. One-class support vector machines (SVM) is employed as the main classifier for training and testing the barcodes and very promising results are achieved given the lowest equal error rate (EER) of 1.83%. © 2021 Elsevier Ltd
Název v anglickém jazyce
Biometric keystroke barcoding: A next-gen authentication framework
Popis výsledku anglicky
Investigation of new intelligent solutions for user identification and authentication is and will be essential for enhancing the security of the alphanumeric passwords entered on touchscreen and traditional keyboards. Extraction of the keystrokes has been very beneficial given the intelligent authentication protocols operating in time-domain; while the time-domain solutions drastically lose their efficiency over time due to converging inter-key times. Realistically reflecting the habitual traits, the frequency-domain solutions, however, reveal unique biometric characteristics better, without any risk of convergence. On the contrary, the existing frequency-based frameworks don't provide storable biometric data for further classification of the attempts. Therefore, we propose a novel barcoding framework converting habitual biometric information into storable barcodes as very low-size barcode images. The key-press times are extracted and turned into pseudo-signals exhibiting binary-train characteristics for continuous wavelet transformation (CWT). The transformed signals are primarily categorized with 4-scale scalograms by various complex frequency B-spline wavelets and subsequently superposed to create the unique barcodes. One-class support vector machines (SVM) is employed as the main classifier for training and testing the barcodes and very promising results are achieved given the lowest equal error rate (EER) of 1.83%. © 2021 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
177
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
"Article number 114980"
Kód UT WoS článku
000663300400004
EID výsledku v databázi Scopus
2-s2.0-85103945632