Window Functions in Rhythm Based Biometric Authentication
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017072" target="_blank" >RIV/62690094:18450/20:50017072 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-45385-5_10" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-45385-5_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-45385-5_10" target="_blank" >10.1007/978-3-030-45385-5_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Window Functions in Rhythm Based Biometric Authentication
Popis výsledku v původním jazyce
Emerging new technologies and new threads entail additional security; therefore, biometric authentication is the key to protecting the passwords by classifying unique biometric features. One of the protocols recently proposed is the rhythm-based authentication dealing with the dominant frequency components of the keystroke signals. However, frequency component itself is not enough to understand the whole keystroke sequence; therefore, the characteristic of a password could only be analyzed by transformations providing the information of when which dominant frequency arises. In this paper, the biometric signal generated from keystroke data is divided into windows by various window functions and sizes for frequency and time localization. As a guide for signal processing in biometrics and biomedicine, we compared Hamming and Blackman widow functions with various sizes in short time Fourier transformations of the signals and found out that Blackman is more appropriate for biometric signal processing. © Springer Nature Switzerland AG 2020.
Název v anglickém jazyce
Window Functions in Rhythm Based Biometric Authentication
Popis výsledku anglicky
Emerging new technologies and new threads entail additional security; therefore, biometric authentication is the key to protecting the passwords by classifying unique biometric features. One of the protocols recently proposed is the rhythm-based authentication dealing with the dominant frequency components of the keystroke signals. However, frequency component itself is not enough to understand the whole keystroke sequence; therefore, the characteristic of a password could only be analyzed by transformations providing the information of when which dominant frequency arises. In this paper, the biometric signal generated from keystroke data is divided into windows by various window functions and sizes for frequency and time localization. As a guide for signal processing in biometrics and biomedicine, we compared Hamming and Blackman widow functions with various sizes in short time Fourier transformations of the signals and found out that Blackman is more appropriate for biometric signal processing. © Springer Nature Switzerland AG 2020.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-45384-8
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
108-118
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Granada, Spain
Datum konání akce
6. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—