Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Signature barcodes for online verification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50018644" target="_blank" >RIV/62690094:18450/22:50018644 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0031320321006026?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0031320321006026?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.patcog.2021.108426" target="_blank" >10.1016/j.patcog.2021.108426</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Signature barcodes for online verification

  • Popis výsledku v původním jazyce

    As a sub-branch of behavioral biometrics, online signature verification systems deal with unique signing characteristics, which could be better differentiated by extraction of habitual singing styles instead of geometric features in case of perfect forgery. Even if the signatures are geometrically identical, speed and frequency components of the signing process might significantly vary. Therefore, a novel framework is introduced as a new signature verification protocol for touchscreen devices using barcodes containing the dominant frequency component of the speed signals. A special interface is designed as signature tracker to extract the displacement data sampled from the signing process. The speed signals are interpolated from the displacement data and the frequency components of the signals are computed by scalograms analysis governed by continuous wavelet transformations (CWT). The signature barcodes are generated as 4-scale scalograms and classified by support vector machines (SVM). Among several compatible wavelets, Gaussian derivative wavelet is selected for generating scalograms and the results of the process are calculated as 2.25% FAR, 2.75% FRR and 2.81%EER for our dataset. The framework is also tested with SVC2004 data that we achieved 0% FAR, 9.33% FRR and 8%EER, also with SUSIG-Visual, SUSIG-Blind, MOBISIG databases and we reached between 1.22%-3.62% average EERs, which are competitive among the relevant results. Given the promising outcomes, the signature barcoding is very reliable method which could be executed by a simple touchscreen interface collecting the barcodes for storing and benchmarking when needed. © 2021 Elsevier Ltd

  • Název v anglickém jazyce

    Signature barcodes for online verification

  • Popis výsledku anglicky

    As a sub-branch of behavioral biometrics, online signature verification systems deal with unique signing characteristics, which could be better differentiated by extraction of habitual singing styles instead of geometric features in case of perfect forgery. Even if the signatures are geometrically identical, speed and frequency components of the signing process might significantly vary. Therefore, a novel framework is introduced as a new signature verification protocol for touchscreen devices using barcodes containing the dominant frequency component of the speed signals. A special interface is designed as signature tracker to extract the displacement data sampled from the signing process. The speed signals are interpolated from the displacement data and the frequency components of the signals are computed by scalograms analysis governed by continuous wavelet transformations (CWT). The signature barcodes are generated as 4-scale scalograms and classified by support vector machines (SVM). Among several compatible wavelets, Gaussian derivative wavelet is selected for generating scalograms and the results of the process are calculated as 2.25% FAR, 2.75% FRR and 2.81%EER for our dataset. The framework is also tested with SVC2004 data that we achieved 0% FAR, 9.33% FRR and 8%EER, also with SUSIG-Visual, SUSIG-Blind, MOBISIG databases and we reached between 1.22%-3.62% average EERs, which are competitive among the relevant results. Given the promising outcomes, the signature barcoding is very reliable method which could be executed by a simple touchscreen interface collecting the barcodes for storing and benchmarking when needed. © 2021 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Pattern Recognition

  • ISSN

    0031-3203

  • e-ISSN

    1873-5142

  • Svazek periodika

    124

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    "Article number: 108426"

  • Kód UT WoS článku

    000776697500001

  • EID výsledku v databázi Scopus

    2-s2.0-85119623668