Online signature verification by continuous wavelet transformation of speed signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014731" target="_blank" >RIV/62690094:18450/18:50014731 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.eswa.2018.03.023" target="_blank" >http://dx.doi.org/10.1016/j.eswa.2018.03.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2018.03.023" target="_blank" >10.1016/j.eswa.2018.03.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online signature verification by continuous wavelet transformation of speed signals
Popis výsledku v původním jazyce
Despite the imitability of the signatures due to presence of numerous image processing programs, online verification systems could provide sufficient security for e-signatures. Recent developments in touch screen technology and android programming also lead to utilization of hidden interfaces stealthily collecting the unique characteristics and storing the key features aside from geometrics. Therefore, we initially designed a signing interface for touchscreens which stealthily collects the precise coordinates while an individual is signing on the screen by fingertips. Even if the coordinate data is extracted as a matrix consisting of x and y values with corresponding time, the speed array is consequently calculated to investigate the higher frequency regions. The speed data processed by continuous wavelet transformations (CWT) to reveal the frequency information of the signing speed with respect to time information. The grayscale spectrograms created by wavelet transforms are converted into arrays for subsequent training session performed by support vector machines (SVM). The trained network successfully classified further attempts of the real and fake signatures with 1.67% false negative (FNR), 3.33% false positive rates (FPR) and 3.41% equal error rate (EER) for 120 signatures, even though the signature is totally public. For understanding the validity of the CWT and SVM running consecutively, the experiments are re-conducted for the signatures taken from SVC2004 and SUSIG public databases. (C) 2018 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Online signature verification by continuous wavelet transformation of speed signals
Popis výsledku anglicky
Despite the imitability of the signatures due to presence of numerous image processing programs, online verification systems could provide sufficient security for e-signatures. Recent developments in touch screen technology and android programming also lead to utilization of hidden interfaces stealthily collecting the unique characteristics and storing the key features aside from geometrics. Therefore, we initially designed a signing interface for touchscreens which stealthily collects the precise coordinates while an individual is signing on the screen by fingertips. Even if the coordinate data is extracted as a matrix consisting of x and y values with corresponding time, the speed array is consequently calculated to investigate the higher frequency regions. The speed data processed by continuous wavelet transformations (CWT) to reveal the frequency information of the signing speed with respect to time information. The grayscale spectrograms created by wavelet transforms are converted into arrays for subsequent training session performed by support vector machines (SVM). The trained network successfully classified further attempts of the real and fake signatures with 1.67% false negative (FNR), 3.33% false positive rates (FPR) and 3.41% equal error rate (EER) for 120 signatures, even though the signature is totally public. For understanding the validity of the CWT and SVM running consecutively, the experiments are re-conducted for the signatures taken from SVC2004 and SUSIG public databases. (C) 2018 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
104
Číslo periodika v rámci svazku
AUGUST
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
33-42
Kód UT WoS článku
000434239800003
EID výsledku v databázi Scopus
2-s2.0-85044146529