Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Online signature verification by continuous wavelet transformation of speed signals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014731" target="_blank" >RIV/62690094:18450/18:50014731 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.eswa.2018.03.023" target="_blank" >http://dx.doi.org/10.1016/j.eswa.2018.03.023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2018.03.023" target="_blank" >10.1016/j.eswa.2018.03.023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Online signature verification by continuous wavelet transformation of speed signals

  • Popis výsledku v původním jazyce

    Despite the imitability of the signatures due to presence of numerous image processing programs, online verification systems could provide sufficient security for e-signatures. Recent developments in touch screen technology and android programming also lead to utilization of hidden interfaces stealthily collecting the unique characteristics and storing the key features aside from geometrics. Therefore, we initially designed a signing interface for touchscreens which stealthily collects the precise coordinates while an individual is signing on the screen by fingertips. Even if the coordinate data is extracted as a matrix consisting of x and y values with corresponding time, the speed array is consequently calculated to investigate the higher frequency regions. The speed data processed by continuous wavelet transformations (CWT) to reveal the frequency information of the signing speed with respect to time information. The grayscale spectrograms created by wavelet transforms are converted into arrays for subsequent training session performed by support vector machines (SVM). The trained network successfully classified further attempts of the real and fake signatures with 1.67% false negative (FNR), 3.33% false positive rates (FPR) and 3.41% equal error rate (EER) for 120 signatures, even though the signature is totally public. For understanding the validity of the CWT and SVM running consecutively, the experiments are re-conducted for the signatures taken from SVC2004 and SUSIG public databases. (C) 2018 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Online signature verification by continuous wavelet transformation of speed signals

  • Popis výsledku anglicky

    Despite the imitability of the signatures due to presence of numerous image processing programs, online verification systems could provide sufficient security for e-signatures. Recent developments in touch screen technology and android programming also lead to utilization of hidden interfaces stealthily collecting the unique characteristics and storing the key features aside from geometrics. Therefore, we initially designed a signing interface for touchscreens which stealthily collects the precise coordinates while an individual is signing on the screen by fingertips. Even if the coordinate data is extracted as a matrix consisting of x and y values with corresponding time, the speed array is consequently calculated to investigate the higher frequency regions. The speed data processed by continuous wavelet transformations (CWT) to reveal the frequency information of the signing speed with respect to time information. The grayscale spectrograms created by wavelet transforms are converted into arrays for subsequent training session performed by support vector machines (SVM). The trained network successfully classified further attempts of the real and fake signatures with 1.67% false negative (FNR), 3.33% false positive rates (FPR) and 3.41% equal error rate (EER) for 120 signatures, even though the signature is totally public. For understanding the validity of the CWT and SVM running consecutively, the experiments are re-conducted for the signatures taken from SVC2004 and SUSIG public databases. (C) 2018 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert systems with applications

  • ISSN

    0957-4174

  • e-ISSN

  • Svazek periodika

    104

  • Číslo periodika v rámci svazku

    AUGUST

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    33-42

  • Kód UT WoS článku

    000434239800003

  • EID výsledku v databázi Scopus

    2-s2.0-85044146529