Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094576" target="_blank" >RIV/00216224:14310/17:00094576 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/10236198.2016.1270274" target="_blank" >http://dx.doi.org/10.1080/10236198.2016.1270274</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2016.1270274" target="_blank" >10.1080/10236198.2016.1270274</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems
Popis výsledku v původním jazyce
In this paper we introduce the theory of dominant solutions at infinity for nonoscillatory discrete symplectic systems without any controllability assumption. Such solutions represent an opposite concept to recessive solutions at infinity, which were recently developed for such systems by the authors. Our main results include: (i) the existence of dominant solutions at infinity for all ranks in a given range depending on the order of abnormality of the system, (ii) construction of dominant solutions at infinity with eventually the same image, (iii) classification of dominant and recessive solutions at infinity with eventually the same image, (iv) limit characterization of recessive solutions at infinity in terms of dominant solutions at infinity and vice versa, and (v) Reid's construction of the minimal recessive solution at infinity. These results are based on a new theory of genera of conjoined bases for symplectic systems developed for this purpose in this paper.
Název v anglickém jazyce
Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems
Popis výsledku anglicky
In this paper we introduce the theory of dominant solutions at infinity for nonoscillatory discrete symplectic systems without any controllability assumption. Such solutions represent an opposite concept to recessive solutions at infinity, which were recently developed for such systems by the authors. Our main results include: (i) the existence of dominant solutions at infinity for all ranks in a given range depending on the order of abnormality of the system, (ii) construction of dominant solutions at infinity with eventually the same image, (iii) classification of dominant and recessive solutions at infinity with eventually the same image, (iv) limit characterization of recessive solutions at infinity in terms of dominant solutions at infinity and vice versa, and (v) Reid's construction of the minimal recessive solution at infinity. These results are based on a new theory of genera of conjoined bases for symplectic systems developed for this purpose in this paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonovské a symplektické systémy: oscilační a spektrální teorie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
42
Strana od-do
657-698
Kód UT WoS článku
000406288900001
EID výsledku v databázi Scopus
—