Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094576" target="_blank" >RIV/00216224:14310/17:00094576 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1080/10236198.2016.1270274" target="_blank" >http://dx.doi.org/10.1080/10236198.2016.1270274</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10236198.2016.1270274" target="_blank" >10.1080/10236198.2016.1270274</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems

  • Popis výsledku v původním jazyce

    In this paper we introduce the theory of dominant solutions at infinity for nonoscillatory discrete symplectic systems without any controllability assumption. Such solutions represent an opposite concept to recessive solutions at infinity, which were recently developed for such systems by the authors. Our main results include: (i) the existence of dominant solutions at infinity for all ranks in a given range depending on the order of abnormality of the system, (ii) construction of dominant solutions at infinity with eventually the same image, (iii) classification of dominant and recessive solutions at infinity with eventually the same image, (iv) limit characterization of recessive solutions at infinity in terms of dominant solutions at infinity and vice versa, and (v) Reid's construction of the minimal recessive solution at infinity. These results are based on a new theory of genera of conjoined bases for symplectic systems developed for this purpose in this paper.

  • Název v anglickém jazyce

    Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems

  • Popis výsledku anglicky

    In this paper we introduce the theory of dominant solutions at infinity for nonoscillatory discrete symplectic systems without any controllability assumption. Such solutions represent an opposite concept to recessive solutions at infinity, which were recently developed for such systems by the authors. Our main results include: (i) the existence of dominant solutions at infinity for all ranks in a given range depending on the order of abnormality of the system, (ii) construction of dominant solutions at infinity with eventually the same image, (iii) classification of dominant and recessive solutions at infinity with eventually the same image, (iv) limit characterization of recessive solutions at infinity in terms of dominant solutions at infinity and vice versa, and (v) Reid's construction of the minimal recessive solution at infinity. These results are based on a new theory of genera of conjoined bases for symplectic systems developed for this purpose in this paper.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonovské a symplektické systémy: oscilační a spektrální teorie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Difference Equations and Applications

  • ISSN

    1023-6198

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    42

  • Strana od-do

    657-698

  • Kód UT WoS článku

    000406288900001

  • EID výsledku v databázi Scopus