Singular Sturmian separation theorems for nonoscillatory symplectic difference systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101296" target="_blank" >RIV/00216224:14310/18:00101296 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/10236198.2018.1544247" target="_blank" >http://dx.doi.org/10.1080/10236198.2018.1544247</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2018.1544247" target="_blank" >10.1080/10236198.2018.1544247</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Singular Sturmian separation theorems for nonoscillatory symplectic difference systems
Popis výsledku v původním jazyce
In this paper we derive new singular Sturmian separation theorems for nonoscillatory symplectic difference systems on unbounded intervals. The novelty of the presented theory resides in two aspects. We introduce the multiplicity of a focal point at infinity for conjoined bases, which we incorporate into our new singular Sturmian separation theorems. At the same time we do not impose any controllability assumption on the symplectic system. The presented results naturally extend and complete the known Sturmian separation theorems on bounded intervals by J. Elyseeva (2009), as well as the singular Sturmian separation theorems for eventually controllable symplectic systems on unbounded intervals by O. Dosly and J. Elyseeva (2014). Our approach is based on developing the theory of comparative index on unbounded intervals and on the recent theory of recessive and dominant solutions at infinity for possibly uncontrollable symplectic systems by the authors (2015 and 2017). Some of our results, including the notion of the multiplicity of a focal point at infinity, are new even for an eventually controllable symplectic difference system.
Název v anglickém jazyce
Singular Sturmian separation theorems for nonoscillatory symplectic difference systems
Popis výsledku anglicky
In this paper we derive new singular Sturmian separation theorems for nonoscillatory symplectic difference systems on unbounded intervals. The novelty of the presented theory resides in two aspects. We introduce the multiplicity of a focal point at infinity for conjoined bases, which we incorporate into our new singular Sturmian separation theorems. At the same time we do not impose any controllability assumption on the symplectic system. The presented results naturally extend and complete the known Sturmian separation theorems on bounded intervals by J. Elyseeva (2009), as well as the singular Sturmian separation theorems for eventually controllable symplectic systems on unbounded intervals by O. Dosly and J. Elyseeva (2014). Our approach is based on developing the theory of comparative index on unbounded intervals and on the recent theory of recessive and dominant solutions at infinity for possibly uncontrollable symplectic systems by the authors (2015 and 2017). Some of our results, including the notion of the multiplicity of a focal point at infinity, are new even for an eventually controllable symplectic difference system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonovské a symplektické systémy: oscilační a spektrální teorie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
1563-5120
Svazek periodika
24
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
41
Strana od-do
1894-1934
Kód UT WoS článku
000455587900004
EID výsledku v databázi Scopus
2-s2.0-85057566926