Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Singular Sturmian comparison theorems for linear Hamiltonian systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114052" target="_blank" >RIV/00216224:14310/20:00114052 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0022039620300802?dgcid=author" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620300802?dgcid=author</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2020.02.016" target="_blank" >10.1016/j.jde.2020.02.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Singular Sturmian comparison theorems for linear Hamiltonian systems

  • Popis výsledku v původním jazyce

    In this paper we prove singular comparison theorems on unbounded intervals for two nonoscillatory linear Hamiltonian systems satisfying the Sturmian majorant condition and the Legendre condition. At the same time we do not impose any controllability condition. The results are phrased in terms of the comparative index and the numbers of proper focal points of the (minimal) principal solutions of these systems at both endpoints of the considered interval. The main idea is based on an application of new transformation theorems for principal and antiprincipal solutions at infinity and on new limit properties of the comparative index involving these solutions. This work generalizes the recently obtained Sturmian separation theorems on unbounded intervals for one system by the authors (2019), as well as the Sturmian comparison theorems and transformation theorems on compact intervals by J. Elyseeva (2016 and 2018). We note that all the results are new even in the completely controllable case.

  • Název v anglickém jazyce

    Singular Sturmian comparison theorems for linear Hamiltonian systems

  • Popis výsledku anglicky

    In this paper we prove singular comparison theorems on unbounded intervals for two nonoscillatory linear Hamiltonian systems satisfying the Sturmian majorant condition and the Legendre condition. At the same time we do not impose any controllability condition. The results are phrased in terms of the comparative index and the numbers of proper focal points of the (minimal) principal solutions of these systems at both endpoints of the considered interval. The main idea is based on an application of new transformation theorems for principal and antiprincipal solutions at infinity and on new limit properties of the comparative index involving these solutions. This work generalizes the recently obtained Sturmian separation theorems on unbounded intervals for one system by the authors (2019), as well as the Sturmian comparison theorems and transformation theorems on compact intervals by J. Elyseeva (2016 and 2018). We note that all the results are new even in the completely controllable case.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Svazek periodika

    269

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    36

  • Strana od-do

    2920-2955

  • Kód UT WoS článku

    000534488300007

  • EID výsledku v databázi Scopus

    2-s2.0-85080043194