Singular Sturmian comparison theorems for linear Hamiltonian systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114052" target="_blank" >RIV/00216224:14310/20:00114052 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022039620300802?dgcid=author" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620300802?dgcid=author</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.02.016" target="_blank" >10.1016/j.jde.2020.02.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Singular Sturmian comparison theorems for linear Hamiltonian systems
Popis výsledku v původním jazyce
In this paper we prove singular comparison theorems on unbounded intervals for two nonoscillatory linear Hamiltonian systems satisfying the Sturmian majorant condition and the Legendre condition. At the same time we do not impose any controllability condition. The results are phrased in terms of the comparative index and the numbers of proper focal points of the (minimal) principal solutions of these systems at both endpoints of the considered interval. The main idea is based on an application of new transformation theorems for principal and antiprincipal solutions at infinity and on new limit properties of the comparative index involving these solutions. This work generalizes the recently obtained Sturmian separation theorems on unbounded intervals for one system by the authors (2019), as well as the Sturmian comparison theorems and transformation theorems on compact intervals by J. Elyseeva (2016 and 2018). We note that all the results are new even in the completely controllable case.
Název v anglickém jazyce
Singular Sturmian comparison theorems for linear Hamiltonian systems
Popis výsledku anglicky
In this paper we prove singular comparison theorems on unbounded intervals for two nonoscillatory linear Hamiltonian systems satisfying the Sturmian majorant condition and the Legendre condition. At the same time we do not impose any controllability condition. The results are phrased in terms of the comparative index and the numbers of proper focal points of the (minimal) principal solutions of these systems at both endpoints of the considered interval. The main idea is based on an application of new transformation theorems for principal and antiprincipal solutions at infinity and on new limit properties of the comparative index involving these solutions. This work generalizes the recently obtained Sturmian separation theorems on unbounded intervals for one system by the authors (2019), as well as the Sturmian comparison theorems and transformation theorems on compact intervals by J. Elyseeva (2016 and 2018). We note that all the results are new even in the completely controllable case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Svazek periodika
269
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
2920-2955
Kód UT WoS článku
000534488300007
EID výsledku v databázi Scopus
2-s2.0-85080043194