Lidskii angles and Sturmian theory for linear Hamiltonian systems on compact interval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119050" target="_blank" >RIV/00216224:14310/21:00119050 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jde.2021.06.037" target="_blank" >https://doi.org/10.1016/j.jde.2021.06.037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2021.06.037" target="_blank" >10.1016/j.jde.2021.06.037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lidskii angles and Sturmian theory for linear Hamiltonian systems on compact interval
Popis výsledku v původním jazyce
In this paper we investigate the Sturmian theory for general (possibly uncontrollable) linear Hamiltonian systems by means of the Lidskii angles, which are associated with a symplectic fundamental matrix of the system. In particular, under the Legendre condition we derive formulas for the multiplicities of the left and right proper focal points of a conjoined basis of the system, as well as the Sturmian separation theorems for two conjoined bases of the system, in terms of the Lidskii angles. The results are new even in the completely controllable case. As the main tool we use the limit theorem for monotone matrix-valued functions by Kratz (1993). The methods allow to present a new proof of the known monotonicity property of the Lidskii angles. The results and methods can also be potentially applied in the singular Sturmian theory on unbounded intervals, in the oscillation theory of linear Hamiltonian systems without the Legendre condition, in the comparative index theory, or in linear algebra in the theory of matrices.
Název v anglickém jazyce
Lidskii angles and Sturmian theory for linear Hamiltonian systems on compact interval
Popis výsledku anglicky
In this paper we investigate the Sturmian theory for general (possibly uncontrollable) linear Hamiltonian systems by means of the Lidskii angles, which are associated with a symplectic fundamental matrix of the system. In particular, under the Legendre condition we derive formulas for the multiplicities of the left and right proper focal points of a conjoined basis of the system, as well as the Sturmian separation theorems for two conjoined bases of the system, in terms of the Lidskii angles. The results are new even in the completely controllable case. As the main tool we use the limit theorem for monotone matrix-valued functions by Kratz (1993). The methods allow to present a new proof of the known monotonicity property of the Lidskii angles. The results and methods can also be potentially applied in the singular Sturmian theory on unbounded intervals, in the oscillation theory of linear Hamiltonian systems without the Legendre condition, in the comparative index theory, or in linear algebra in the theory of matrices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Svazek periodika
298
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
1-29
Kód UT WoS článku
000681321100001
EID výsledku v databázi Scopus
2-s2.0-85109165913