Oscillation Numbers for Continuous Lagrangian Paths and Maslov Index
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134002" target="_blank" >RIV/00216224:14310/23:00134002 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10884-022-10140-7" target="_blank" >https://link.springer.com/article/10.1007/s10884-022-10140-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10884-022-10140-7" target="_blank" >10.1007/s10884-022-10140-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Oscillation Numbers for Continuous Lagrangian Paths and Maslov Index
Popis výsledku v původním jazyce
In this paper we present the theory of oscillation numbers and dual oscillation numbers for continuous Lagrangian paths in R-2n. Our main results include a connection of the oscillation numbers of the given Lagrangian path with the Lidskii angles of a special symplectic orthogonal matrix. We also present Sturmian type comparison and separation theorems for the difference of the oscillation numbers of two continuous Lagrangian paths. These results, as well as the definition of the oscillation number itself, are based on the comparative index theory (Elyseeva, 2009). The applications of these results are directed to the theory of Maslov index of two continuous Lagrangian paths. We derive a formula for the Maslov index via the Lidskii angles of a special symplectic orthogonal matrix, and hence we express the Maslov index as the oscillation number of a certain transformed Lagrangian path. The results and methods are based on a generalization of the recently introduced oscillation numbers and dual oscillation numbers for conjoined bases of linear Hamiltonian systems (Elyseeva, 2019 and 2020) and on the connection between the comparative index and Lidskii angles of symplectic matrices (Šepitka and Šimon Hilscher, 2021).
Název v anglickém jazyce
Oscillation Numbers for Continuous Lagrangian Paths and Maslov Index
Popis výsledku anglicky
In this paper we present the theory of oscillation numbers and dual oscillation numbers for continuous Lagrangian paths in R-2n. Our main results include a connection of the oscillation numbers of the given Lagrangian path with the Lidskii angles of a special symplectic orthogonal matrix. We also present Sturmian type comparison and separation theorems for the difference of the oscillation numbers of two continuous Lagrangian paths. These results, as well as the definition of the oscillation number itself, are based on the comparative index theory (Elyseeva, 2009). The applications of these results are directed to the theory of Maslov index of two continuous Lagrangian paths. We derive a formula for the Maslov index via the Lidskii angles of a special symplectic orthogonal matrix, and hence we express the Maslov index as the oscillation number of a certain transformed Lagrangian path. The results and methods are based on a generalization of the recently introduced oscillation numbers and dual oscillation numbers for conjoined bases of linear Hamiltonian systems (Elyseeva, 2019 and 2020) and on the connection between the comparative index and Lidskii angles of symplectic matrices (Šepitka and Šimon Hilscher, 2021).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Dynamics and Differential Equations
ISSN
1040-7294
e-ISSN
1572-9222
Svazek periodika
35
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
2589-2620
Kód UT WoS článku
000763193100001
EID výsledku v databázi Scopus
2-s2.0-85125526670